Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Department of Mathematics and Informatics, University of Agadez, Post Box 199, Agadez, Niger 2. International Chair of Mathematical Physics and Applications, (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 B. P.: 50 Cotonou, Benin

ABSTRACT

In this paper, we first construct generalized q2-cosine, q2-sine and q2-exponential functions. We then use q2-exponential function in order to define and investigate a q2-Fourier transform. We establish q-analogues of inversion and Plancherel theorems.

KEYWORDS

q-bessel function, q-trigonometric function, q2-fourier transform, inversion theorem, plancherel theorem.

Cite this paper

Arjika S. 2019. “On q2-Trigonometric Functions and Their q2-Fourier Transform” Journal of Mathematics and System Science 9: 130-5.

References

[1] Jackson, F. H. 1910. “On a q-Definite Integrals.” Quarterly Journal of Pure and Applied Mathematics 41: 193-203.

[2] Jackson, F. H. 1908. “On a q-Functions and Certain Difference Operator.” Transactions of the Royal Society of London 46: 253-81.

[3] Rubin, R. L. 1997. “A q2-Analogue Operator for q2-Analogue Fourier Analysis.” J. Math. Anal. App. 212: 571-82.

[4] Koornwinder, T. H., and Swarttouw, R. F. 1992. “On q-Analogues of the Fourier and Hankel Transforms.” Trans. Amer. Math. Soc. 333: 445-61.

[5] Exton, H. 1983. Basic Hypergeometric Functions and Applications. Chichester: Ellis Horwood.

[6] Hahn, W. 1953. “Die mechanishce Deutungeiner geometrischen Differenzengleichung.” Z. Angew. Math. Mech. 33: 270-2.

[7] Vaksman, L. L., and Korogodskii, L. I. 1989. “An Algebra of Bounded Functions on the Quantum Group of the Motions of the Plane, and q-Analogues of Bessel Functions.” Soviet Math. Dokl. 39: 173-7.

[8] Kalnins, E. G., Miller, W., and Mukherjee, S. 1994. “Models of q-Algebra Representations: The Group of Plane Motions.” SIAM J. Math. Anal. 25: 513-27.

[9] Koelink, H. T., and Swarttouw, R. F. 1994. “On the Zeroes of the Hahn-Exton q-Bessel Function and Associated q-Lommel Polynomials.” J. Math. Anal. Appl. 186: 690-710.

[10] Koelink, H. T. 1994. “The Quantum Group of Plane Motions and the Hahn-Exton q-Bessel Function.” Duke Math. J. 76: 483-508.

[11] Swarttouw, R. F., and Meijer, H. G. 1994. “A q-Analogue of the Wronskian and a Second Solution of the Hahn-Exton q-Bessel Difference Equation.” Proc. Amer. Math. Soc. 120: 855-64.

[12] Gasper, G., and Rahman, M. 1990. Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Application. Vol, 35, Cambridge, UK: Cambridge Univ. Press.

[13] Koekoek, R., and Swarttouw, R. 1998. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue. Delft Report 98-17, the Netherlands.

[14] Andrews, G. E., Askey, R., and Roy, R. 1999. Special Functions, Encyclopedia of Mathematics and Its Applications Sciences. Vol. 71, Cambridge: Cambridge University Press.

[15] Jazmati, M., Mezlini, K., and Bettaibi, N. 2014. “Generalized q-Hermite Polynomials and the q-Dunkl Heat Equation.” Bull. Math. Anal. Appl. 6 (4): 16-43.

[16] Kac, V. G., and Cheung, P. 2002. Quantum Calculus, Universitext. New York: Springer-Verlag.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]