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1. Introduction  

During the last years, an intensive work was 

founded about the so-called q-basic theory. Taking 

account of the well-known Ramanujan works shown 

at the beginning of this century by Jackson [1, 2], 

many authors such as Askey, Gasper, Rogers, 

Andrews, Koornwinder, Ismail, Srivastava, and others 

(see references) have recently developed this topic. 

The present article is devoted to extend the study of 

the q
2
-analogue of the Fourier transforms. The method 

used here differs from those given by Richard [3]. We 

take as definition a general form of q
2
-cosine [4]: 

   (1) 

and q
2
-sine [4]: 

  (2) 

where Jα(x; q
2
) is the q

2
-analogue of the Bessel 
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function [5, 6] 
 

        (3) 

The q
2
-analogue Bessel functions and closely 

related variants have received much attention because 

of their importance in the study of q-analogues of 

representations of the Group of Plane Motions and of 

the Quantum Group of Plane Motions, q-differential 

equations, and other topics. For more details, see Refs. 

[7-11]. 

Our aim in this paper is to give an extension of 

q
2
-analogue trigonometric functions cos(x; q

2
); sin(x; 

q
2
) and q

2
-analogue exponential function e(x; q

2
) [4]. 

We then study generalized q
2
-Fourier transform and 

give the q-analogues of inversion and Plancherel 

theorems. 

The paper is organized as follows: in Section 2, we 

give notations and preliminaries to be used in the 

sequel. In Section 3, we define generalized q
2
-cosine, 

q
2
-sine and q

2
-exponential functions and study some 

of their properties. We give q-analogues of inversion 

and Plancherel theorems. We end with concluding 

remarks in Section 4. 

 

 

 

D 
DAVID  PUBLISHING 



On q
2
-Trigonometric Functions and Their q

2
-Fourier Transform 

 

131 

2. Notations and Preliminaries 

Throughout this paper, we assume that 0 < q < 1; α > 

-1 and we write ℝq,+ = {q
n
, n ∈ ℤ}. We follow the 

notations and terminology in Refs. [12-14]. The basic 

hypergeometric series r s 

     (4) 

converges absolutely for all x if r ≤ s and for |x| < 1 if 

r = s + 1 and for terminating. The compact factorials 

of r s are defined respectively by: 

  (5) 

and 

(a1, a2; ..., am; q)n = (a1; q)n(a2; q)n ... (am; q)n  (6) 

where m ∈ ℕ = {1, 2, ...} and n ∈ ℕ0 = ℕ ∪ {0}. 

For a complex number x and n ∈ ℕ, the q-numbers 

and the q-factorials are defined as follows: 

[x]q = (1－q
x
)/(1－q), [n] q! =      

   q, [0]q! = 1. 

For α > -1, we define the generalized q-integers by 

[15]: 

[2n]q,α = [2n +2α + 1]q, 

[2n + 1]q,α = [2n +2α + 2] q           (7) 

and the generalized q-shifted factorials by: 

(q; q)n,α:= (1－q)
n
[n]q,α!.         (8) 

Remark that, we can rewrite Eq. (8) as 

(q; q)2n,α = (q
2
; q

2
)n(q

2α+2
; q

2
)n 

and 

(q; q)2n+1,α = (q
2
; q

2
)n(q

2α+2
; q

2
)n+1. 

By means of Eq. (7), we may express the 

generalized q-factorials as 

 

and 

 
where Γq is the q-Gamma function given by [12]: 

 

and tends to Γ(z) when q tends to 1
－

. In particular, we 

have the limits: 

 

where (a)k = a(a + 1) ... (a + k － 1) is the 

Pochhammer-symbol [12, 16]. 

Remark that, for α = −
 

 
, we get: 

 

The q-Jackson integrals from 0 to +∞ and from −∞ 

to +∞ are defined by [1]: 

   (9) 

and 

   (10) 

provided the sums converge absolutely. 

3. Results and Discussion 

In this section, we define and study generalized 

q
2
-trigonometric functions. We then introduce a 

q
2
-Fourier transform that formally tends to its classical 

analogue as α = −1/2, q  1
－

 and study some of its 

properties. 

3.1 Generalized q
2
-Analogue Trigonometric Functions 

We recall that the q
2
-analogue exponential function 

e(x; q
2
) is defined in Ref. [3] by 

e(x; q
2
) = cos(﹣ix; q

2
) + i sin(﹣ix; q

2
).   (11) 

By means of generalized q-shifted factorials (q; 

q)2n,α and (q; q)2n+1,α, we define generalized q
2
-cosine 
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and q
2
-sine as follows. 

Definition 3.1. 

For x ∈ ℂ and α > −1, the generalized q
2
-cosine and 

q
2
-sine are defined by: 

   (12) 

and 

 (13) 

where we have put 

 

and 

 

By means of Eqs. (12) and (13), we define 

generalized q
2
-analogue exponential function eα(x; q

2
) 

by 

eα(x; q
2
) = cosα(﹣ix; q

2
) + i sinα(﹣ix; q

2
).  (14) 

Remark 3.1. 

Compared with cos(x; q
2
), sin(x; q

2
) and e(x; q

2
), 

the generalized q
2
-cosine and q

2
-sine and exponential 

functions cosα(x; q
2
), sinα(x; q

2
) and eα(x; q

2
), 

respectively, involve two parameters “q” and “α”. 

Clearly, cos(x; q
2
), sin(x; q

2
) and e(x; q

2
) can be 

considered as a special case of Eqs. (12)-(14), 

respectively. For α = −1/2, we have: 

 
The relation between generalized q

2
-cosine and 

q
2
-sine functions and the classical hypergeometric 

functions is based on observations such as 

 

and 

 

For α = −1/2, we have: 

 

 
The generalized q

2
-exponential function eα(x; q

2
) is 

absolutely convergent for all x in the plane, 0 < q < 1, 

since both generalized q
2
-cosine and q

2
-sine are 

absolutely convergent for all x in the plane, 0 < q < 1. 

We introduce generalized q-differential operator as 

 

(15) 

and 

 

provided that f’(0) exists. 

We notice if f is differentiable at x, 

 

Observe that, α = −1/2 in Eq. (15) corresponds to 

the q
2
-analogue differential operator [3], i.e.,  q,－1/2f(x) 

=  qf(x), and  q,－1/2f(0) = f’(0). 

For all function f on ℝq,+, we have: 
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where fe and fo are respectively, even and odd parts of 

f. Since we have a realization of the generalized 

q-differential operator  q,α in Eq. (16), we have: 

 q,α cosα ((1 − q)xt; q
2
 = -tsinα(1 − q)xt; q

2
)  (16) 

 q,α sinα(1 − q)xt; q
2
) = t cosα((1 − q)xt; q

2
)  (17) 

and 

 q,α eα((1 − q)xt; q
2
) = teα((1 − q)xt; q

2
).  (18) 

3.2 Generalized q
2
-Fourier Transform 

The goal is now to define a generalized 

q
2
-deformed Fourier transform that formally tends to 

its classical analogue as α = －1/2 and q  1
－

. 

For 1 ≤ p < ∞, we denote by     
 

(ℝq,+) the space of 

complex-valued functions f on ℝq,+ such that: 

  (19) 

and for p = ∞, we denote by     
∞ (ℝq,+) the space of 

complex-valued functions f on ℝq,+ such that 

 

The generalized q
2
-Fourier transform will now be 

defined. 

Definition 3.2. 

Let f be a function in the space     
 (ℝq,+). The 

generalized q
2
-Fourier transform is defined by: 

 

where 

 

For α = −1/2 and letting q    1 subject to the 

condition, 

          (20) 

gives, at least formally, the classical Fourier transform. 

In the remainder of this paper, we assume that the 

condition in Eq. (20) holds. 

The following Lemma will be used to prove the 

inversion Theorem. 

Lemma 3.1. 

 

Proposition 3.1. 

For f, g ∈     
  ℝq,+), the generalized q

2
-cosine and 

q
2
-sine transforms pair holds true. 

  (21) 

and 

  (22) 

Proof. In order to prove the Proposition 3.1., we 

will start with the relation [4]: 
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 (23)

 

where |z| < 1, n, m ∈ ℤ. 

Substituting q by q
2
 and z by q

α+1
 into Eq. (23) 

yields 

 

(24) 

Rewrite the identity Eq. (24) as the transform pair 

  (25)

 

and 

 

where f and g are      
  on the set {q

k
, k ∈ ℤ} with 

respect to counting measure. Replacing in Eq. (25) 

f(q
k
), g(q

n
) by q

k(α+1)
f(q

k
), q

n(α+1)
 g(q

n
), respectively, we 

obtain: 

 (26) 

For such q ∈ {q
k
, k ∈ ℤ }, we can replace q

k
, q

n
 in 

Eq. (26), by (1 − q)
1/2

q
k
, (1 − q)

1/2
q

n
. Then, 

 

Next, replacing f((1 − q)
1/2

q
k
) and g((1 − q)

1/2
q

n
) by 

f(q
k
) and g(q

n
), we get: 

  (27) 

With the q-integral notation in Eq. (9), the relation 

in Eq. (27) is equivalent to 

 

 

The proof of Eq. (21) is achieved. Similarly, we can 

prove Eq. (22). 

Remark 3.2. 

For α = −1/2 and q   1 in assertions of Eqs. (21) and 

(22), we get the classical Fourier pair: 

g(λ) = 

 

f(x) = 

 
Lemma 3.2. 

For f, g ∈     
 (ℝq,+), the transformations f ⟼ g and 

g ⟼ f of Eqs. (21) and (22) establish isometry of 

Hilbert spaces: 
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   (28) 

Let us now turn to the L
2
 theory of the generalized 

q
2
-Fourier transform. Since the generalized q

2
-Fourier 

transform is defined and bounded on (    
      

 )(dqt) 

(dense in     
 (dqt) for the functions with finite support), 

it defines a bounded extension to all of     
 (dqt). 

We can use Lemma 3.1. and Proposition 3.1. to 

prove the following theorem. 

Theorem 3.1. 

f ∈ (    
      

 )(dqt) implies 

f(x) = 

   (29)

 

Theorem 3.2. 

Let f be the functions with finite support in 

    
 (dqt). f ∈     

 (dqt) implies 

    (30) 

4. Conclusions 

In our present investigation, we have constructed a 

pair of potentially generalized q
2
-cosine, q

2
-sine and 

q
2
-exponential functions. We then have successfully 

used eα(x; q
2
) to define and investigate generalized 

q
2
-Fourier transform. In particular, we have 

established q-analogues of inversion and Plancherel 

theorems. 
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