Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various properties of Brownian motion and including 1-, 2-, 3-, and multi- dimensional models with applications in Neuroscience.

KEYWORDS

Fokker-Plank equation, transition state theory, tunneling.

Cite this paper

References

[1] Fundator, M. 2016. “Applications of Multidimensional Time Model for Probability Cumulative Function for Parameter and Risk Reduction. In JSM Proceedings Health Policy Statistics Section Alexandria.” VA: American Statistical Association. 433-41.

[2] Fundator, M. 2016. “Multidimensional Time Model for Probability Cumulative Function.” In JSM Proceedings Health Policy Statistics Section. 4029-39.

[3] Fundator, M. 2016. Testing Statistical Hypothesis in Light of Mathematical Aspects in Analysis of Probability doi:10.20944/preprints201607.0069.v1

[4] Fundator, M. 2017. Application of Multidimensional Time Model for Probability Cumulative Function to Brownian Motion on Fractals in Chemical Reactions (44th Middle Atlantic Regional Meeting, June/9-12/16, Riverdale, NY) Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0167 In preparation for publication.

[5] Fundator, M. 2017. Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (Northeast Regional Meeting, Binghamton, NY, October/5-8/16). Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0168 In preparation for publication.

[6] Fundator, M. 2017. “Multidimensional Time Model for Probability Cumulative Function and Connections Between Deterministic Computations and Probabilities.” Journal of Mathematics and System Science 4: 101-9.

[7] Bohr, N., Kramers, H. A., and Slater, J. C. 1924. “The Quantum Theory of Radiation, Reprinted in Van der Waerden B. L., Sources of Quantum Mechanics (Amsterdam, 1967).  The quantum Theory of Radiation Phil. Mag. (6) 47: 785-802.

[8] Hendry, J. 1981. Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators and Its Role in the History of Quantum Mechanics. Centaurus, 25: 189-221. doi:10.1111/j.1600-0498.1981.tb00644.x

[9] Eyring, H. 1935. “The Activated Complex in Chemical Reactions.” J. Chem. Phys. 3 (2): 107-15. doi:10.1063/1.1749604.

[10] Hänggi, P., Talkner, P., and Borkovec, M. 1990. “Reaction-Rate Theory: Fifty Years After Kramers.” Reviews of Modern Physics. 62 (2) 251-342.

[11] Laidler, K., and King, C. 1983. “Development of    transition-state theory.” Journal Phys. Chem. 87 (15): 2657.

[12] Laidler, K., and King, C. 1998. “A Lifetime of Transition-state Theory.” The Chemical Intelligencer 4 (3): 39.

[13] Laidler, K. J. 1969. Theories of Chemical Reaction Rates. Book with editor McGraw-Hill.

[14] McCann, L. I., Dykman, M., and Golding, B. 1999. “Thermally Activated Transitions in a Bistable Three-dimensional Optical Trap.” Journal Nature 402: 785-7.

[15] Basilevskii, M. V., Ryaboi, V. M., and Weinberg, N. N. 1990. Kinetics of Chemical Reactions in Condensed Media in the Framework of the Two-dimensional Stochastic Model.” Journal Phys. Chem. 94 (24): 8734-40.

[16] Davis, M. E., and Davis, R. J. 2003. “Fundamentals of Chemical Reaction Engineering Published.” The McGraw-Hill ISBN 0-07-119260-3.

[17] Bianchi, M. P., and Monaco, R. 2004. “A BGK Type Model for a Gas Mixture with Reversible Reactions.” in New Trends in Mathematical Physics (World Scientific, Singapore) 107-20.

[18] Kramers, H. A. 1940. “Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions.” Physical 7 (4) 284-304.

[19] Von Mises, R. 1981. Probability, Statistics and Truth, 2nd rev. Dover Books. New York, ISBN 0-486-24214-5.

[20] Morters, P. 2010. Sample Path Properties of Brownian Motion. Lecture Notes. http://people.bath.ac.uk/maspm/lecnotes.pdf.

[21] Brillinger D. R. 1982. Two Reports On Higher-Order Moments: a) Moments, Cumulants and Some Applications To Stationary Random Processes. b) Distributions of Particle Displacements Via Higher-order Moment Functions. Dig. DB http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/382.pdf.

[22] Tong, Y. L. 1997. “Relationship between Stochastic Inequalities and Some Classical Mathematical Inequalities.” Journal of Inequalities and Applications 1 (1): 85-98.

[23] Esary, J. D., Proschan, F., and Walkup, D. W. 1976. “Association of Random Variables with Applications” Journal Ann. Math. Statist. 38: 1466-74.

[24] Halmos, P. R. 1963. “Lectures on Boolean Algebras.” Book by Van Nostrand.

[25] Khinchin, A. Y. 1998. “Three Pearls of Number Theory.” (Dover Books on Mathematics) ISBN-10: 0486400263

[26] Cramer, M., Plenio, M. B., Flammia, S. T., Somma, R., Gross, D., Bartlett, S. D., Landon-Cardinal, O., Poulin, D., and Liu, Y. K. 2010. “Efficient Quantum State Tomography Nat Commun.” doi: 10.1038/ncomms1147.

[27] Altepeter, J. B., James, D. F. V., and Kwiat P. G. 2004 Quantum State Tomography https://ai2-s2-pdfs.s3.amazonaws.com/cd30/ddbb5a49ef812b717ba49b8393615a7140b3.pdf.

[28] Mohseni, M., Rezakhani, A. T., and Lidar, D. A. 2008. Quantum Process Tomography: Resource Analysis of Different Strategies arXiv:quant-ph/0702131.

[29] Acharya, A., Theodore, K. T., and Guţă, M. 2016. “Statistically Efficient Tomography of Low Rank States with Incomplete Measurements.” New Journal of Physics 18 (4): 043018.

[30] Wikipedia.

[31] Rjasanow, S., and Wagner, W. 2005. Stochatic Numerics for the Boltzmann Equation Book by Springer ISBN 978-3-540-27689-0.

[32] Donald, L. T. 1998. “Modern Methods for Multidimensional Dynamics Computations in Chemistry.” Book by World Scientific ISBN-10: 9810233426.

[33] Atkins, P., and de Paua, J. 2006. “Physical Chemistry for the Life Sciences.” Books by Oxford University Press. 2006. ISBN-10: 1-4292-3114-9.

[34] Garrett, R., and Grisham, C. 2005. Biochemistry. 3rd Edition. Book by California. Thomson Learning, Inc.

[35] Wade, L. G. 2006. Organic Chemistry. 6th Edition. Book by Pearson Prentice Hall.

[36] The Arrhenius Law: Activation Energies-Chemistry LibreTexts https://chem.libretexts.org › ... › Kinetics › Temperature Dependence of Reaction Rates.

[37] Chemical Reactions and Kinetics http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/react.html.

[38] Griffiths, J. 2008. “A Few of the Great People and Major Discoveries that Have Shaped this Century-old Technique.” Journal Anal. Chem. 80 (15): 5678-83.

[39] Hänggi, P., and Goychuk, I. 2002. “Ion Channel Gating: A First-passage Time Analysis of the Kramers Type.” PNAS 99 (6): 3552-6.

[40] Das, S., Vikalo, H., and Hassibi, A. 2009. “Stochastic Modeling of Reaction Kinetics in Biosensors Using the Fokker Planck Equation.” IEEE International Workshop on Genomic Signal Processing and Statistics, Minneapolis, MN. 1-4.

[41] Lecca, P. 2013. “Stochastic Chemical Kinetics: A Review of the Modelling and Simulation Approaches.” Biophysical Reviews 5 (4): 323-45.

[42] Oppenheim, I., Shuler, K. E., and Weiss, G. H.  1969. “Stochastic and Deterministic Formulation of Chemical Rate Equations.” Journal of Chemical Physics 50 (1): 460-6.

[43] Moore, C. B. A. “Spectroscopist’s View of Energy States.” Energy Transfers, and Chemical Reactions.

[44] Reinhardt, C. 2006. “Shifting and Rearranging: Physical Methods and the Transformation of Modern Chemistry.” Nuncius Journal of the History of Science 55 (1): 93-4.

[45] Daniel T. Stochastic Simulation of Chemical Kinetics。

[46] Scheraga, H. A., Khalili, M., and  Liwo, A. Protein-Folding Dynamics: Overview of Molecular Simulation Techniques

[47] Aristov V.V. 2001. “Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows.” Springer Netherlands. 60.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]