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Abstract: Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater 
Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various 
properties of Brownian motion and including 1-, 2-, 3-, and multi- dimensional models with applications in Neuroscience.  
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“The rate of chemical reactions is a very complicated subject.” 

(Harold S. Johnson, 35 years after EPE). 

 

“The overall picture is that the validity of the transition state theory has not 

yet been really proved and its success seems to be mysterious.” 

(Raymond Daudel, Georges Leroy, Daniel Peeters, and Michael Sana, 17 years later 

in “Variational Transition State Theory with Multidimensional Tunneling” 

by Antonio Fernandez-Ramos, Benjamin A. Ellingson, Bruce C. Garrett, and Donald G. Truhlar). 
 

 

1. Introduction 

There are different questions, arising in the original 

one-dimensional Kramer’s model for application of 

Brownian motion to kinetics chemical reactions, and 

consequent extensions to 2-, 3-, and multi-dimensional 

approaches, concerning state of equilibrium between 

reactants and products or activated complexes, 

different filtering patterns, different energy barriers, 
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large depolarization that causes two time scales 

requiring frequency domain analysis, spatial 

dependence of memory friction, and other time and 

probabilistical phenomena that can appear e.g. in 

application to surface acoustic wave pressure sensors 

in investigation of the sensitivity of these devices in 

high pressure and high temperature environments. All 

of the above mentioned questions require resolution 

and special and very sensitive approaches from the 

combination of new mathematical methods, quantum 

mechanics considerations, and empirical 

investigations of kinetics of chemical reactions, for 
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both modeling and simulation of these parameters.  

The discussion with Statement of Chemical 

Equations, Discussion of Boltzmann Type Kinetic 

Equations, Kramers Approach with Remaining 

Problems and Modern Approaches is intended to 

provide guidance how to deal with arising problems in 

modeling and simulation. 

2. Materials 

Based on huge number of publications that were 

stemming from new results and publications in 

Stochastic Analysis of Differential Equations in 

relation to chemical kinetics (to mention a few 

[27-47]), application of Multiphysics and COMSOL, 

simulating multiple physical models combining 

chemical kinetics and fluid mechanics with finite 

element methods for the mathematical structure of the 

models of Boltzmann type kinetic equations for 

reacting gas mixtures for particles undergoing 

inelastic interactions with reactions of bimolecular and 

dissociation-recombination type is very complicated, 

because the collisional operators that usually in the 

full Boltzmann equations, are expressed by 5-fold 

integrals. Consequently direct numerical applications 

of these models present several computational 

difficulties.  

The search for the simpler solution had its long way 

through the introduction of the equation for the 

Brownian motion by Albert Einstein and the quantum 

state tomography (QST) to application of 

multi-dimensional Fokker-Plank stochastic differential 

equation. With the application of transition State 

Theory to Arrhenius equation shown in Eq. (1): 

R = C ݁
ିሺா್

ೖ೅ൗ ሻ            (1) 

where, R is the rate of chemical reaction, Eb the 

activation energy barrier , k is the Boltzmann constant, 

T is the temperature, and C is a constant transforms C 

to (Eq. (2)):  

C = 
௞்

௛
                (2) 

where, h is Plank’s constant, this however, does not 

consider the state of equilibrium of the reactants. 

The equilibrium constant is expressed by Eq. (3):  

k =exp (-∆ܩ/ܴܶሻ            (3) 

where, ∆ܩ  is Gibbs energy of activation and 

transition state, and is a difference between energy of 

reactants and energy of activated complexes shown in 

Eq. (4): 

k1 = exp(∆S/R) exp(-∆H/RT)       (4) 

where, ∆S is an entropy of activation and ∆H is an 

enthalpy of activation Eyring and Polanyi constructed 

a potential energy surface as a three-dimensional 

diagram following foundations of quantum-mechanics 

using experimental data on vibrational frequencies and 

energies of dissociation. 

TST (Transitional State theory) (stated by Eyring, 

Polanyi and Evans) does not require the reactants and 

products to be in equilibrium, but the activated 

complexes are in quasi-equilibrium with the reactants. 

And the equilibrium constant k for quasi- equilibrium 

is Eq. (5): 

k = 
௞భ

௞మ
 ݇ଶ = k’v          (5) 

where, k1 is the rate constant, v is the frequency of the 

vibrational mode converting the activated complex to 

the product, k’ is a proportionality constant, and from 

the statistical mechanics (Eq. (6)): 

k= 
௞್்

௛௩
exp(െ∆G/RT)         (6) 

with values of interest at the transition state (Eq. (7)). 

∆G =∆Hെ ܶ∆S           (7) 

where, ∆S is an entropy of activation and ∆H is an 

enthalpy of activation and Eyring equation has the 

following form shown in Eq. (7): 

k=k′
௞್்

௛
exp(∆S/R)exp(-∆H/RT)       (8) 

In the theory of the velocity of chemical reactions 

the problem of study by Kramers was based on 

assumption that the reactants are in the state of 

equilibrium, or quasi-equilibrium (chemical 

equilibrium). His introduction of diffusion equation is 
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given in the following form of Fokker-Plank equation 

(Eq. (9)): 

m
డమೣ

డ௧మ = - 
డ௎ሺ௫ሻ

డ௫
݉ߛ - 

డ௫

డ௧
 + F (t)     (9) 

where, m is the reduced mass in the potential of mean 

force U, and F is a noise of a random fluctuating force, 

originating from the thermal motion, ߛ is a viscosity. 

It was based on the assumptions about a particle 

that moves in an external field of force and 

additionally is subject to the irregular forces of a 

surrounding medium in temperature equilibrium, 

which he called Brownian motion. The conditions are 

such that the particle is thought of as caught in a 

potential hole but may escape in the course of time by 

passing over a potential barrier. The problem is to 

calculate the probability of escape in its dependency 

on temperature and viscosity of the medium. 

The study had the following problems, pointed out 

in his original paper: 

(1) The study for the sake of simplicity was only a 

one-dimensional model; 

(2) However, as long as no perfect temperature 

equilibrium is attained, the equation of Max Well 

velocity distribution holds only approximately. This is 

even the case when the external force is zero. 

According to his description, the Brown in forces of 

the medium illustrate the mechanism which strives  

to bring about temperature equilibrium. The value of 

the viscosity coefficient ߛ (which may depend on T 

even in the manner of an exponential function) is a 

measure for the intensity with which the molecules in 

the different states react with the surrounding 

medium; 

(3) The model illustrates also the ambiguity 

involved in the conception, transition state; 

(4) Quantum mechanical, tunnel-effects for which 

there is no room in our model, could also play a part; 

(5) Both Kramers and Grote-Hynes improvement 

give a well-defined rate constant, and therefore cannot 

account for dispersed kinetics or dynamic disorder. 

Such a clear separation of time scale is no longer true 

for proteins, which are sluggish systems as 

demonstrated by the fluctuation observed at the slow 

and broad range of time scales. 

Dispersed kinetics and dynamic disorder has been 

the subject of intensive theoretical investigations. The 

first approach assumes the fluctuating rate constant is 

phenomenologically dependent on a time-varying 

control parameter, such as the activation barrier height, 

or the area of the bottleneck. Although this approach 

is conceptually straightforward, the control parameters 

are usually not experimentally accessible. As a result, 

their dynamics is often assumed empirically on an ad 

hoc basis. One of the examples is Brownian motion 

governed by Langevin dynamics. 

The second one assumes a kinetic scheme involving 

multiple discrete conformational states with different 

rate constants. However, there is often no sufficient 

information about the kinetic parameters or the 

connection topology among the multiple states.  

The quantum state tomography QST could be 

considered as an attempt to solve most of the above 

problems. Its aim is to statistically reconstruct an 

unknown state from the outcomes of repeated 

measurements performed on identical copies of the 

state. Among the proposed estimation methods the 

authors mention: 

(1) variations of maximum likelihood and least 

squares estimator; 

(2) linear inversion; 

(3) Bayesian inference; 

(4) estimation with incomplete measurements; 

(5) continuous variables tomography. 

However, composite systems such as trapped ions, 

due to the exponential increase in dimension in order 

to identify and estimate the state with a reduced 

number of measurements demand special approaches.  

RRKM (Rice-Ramsperger-Kassel-Marcus) rate 

theory developed about the time of BKS (Bohr, 

Kramers, and Slater) theory that uses notions of active 

and inactive molecules is a good introduction to the 

use of well developed mathematical apparatus of 
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Boolean algebra and fuzzy logic. Kramers reaction 

rate theory predicts that the solvent dynamics will 

always decrease the reaction rate, or that in the most 

favorable situation no barrier recrossings take place 

and the rate constant corresponds with that of RRKM 

rate theory, which gives the Transition State Theory 

rate as a function of the collision rate for independent 

polyatomic molecules. However, for general realistic 

applications, Kramers’ theory (and RRKM theory) 

fails when the time scale of barrier crossing (which is 

of course much faster than 1/k) is in the same order or 

even slower than the time scale of the correlations in 

the random solvent fluctuations.  

Both theories BKS and RRKM depend on time 

scale of barrier escaping and both fail in many 

particular and experimental cases. In order to obtain a 

good agreement between experiment and theory, a 

smaller value seff < s for the total number of the 

vibrational degrees of freedom should be considered 

in the classical RRKM theory.  

First approach to multidimensional time model is 

through Kramers turnover problem in the theory of 

velocity of chemical reactions.  

It is important and very interesting to consider such 

point that Kramers in his original work had it as 

possibility that multidimensional pattern could be 

related to time dimensions, as he based his 

introduction theory of Brownian motion on the 

Einstein’s pattern he considered a range of time 

intervals τ. His discussion of the possibility of a term 

proportional to τ in the expression for Moments of 

Brownian motion Bτn (n > 1) related it to the fact that 

the values, which X takes at moments t1, t2 . . . . tn 

which lie sufficiently close together are no longer 

independent; and Moments of Brownian motion Bτn 

(n > 1) in fact are represented by a volume integral  

∫…∫X (t1)X( t2) . . X (tn) dt1dt2 . . . .dtn 

over an n-dimensional cube; the contribution to this 

integral due to a narrow cylinder extending along the 

diagonal t1= t2 = . . .= tn may give a term proportional 

to τ. 
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