Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Independent Scholar, 126/7 Sok. No:10/1, Daire 3, Evka 3, Bornova- Izmir 35050, Turkey

ABSTRACT

The Leibniz-Hopf algebra is the free associativealgebra with one generator in each positive degree and coproduct is given by the Cartan formula. It has been also known as the ‘ring of noncommutative symmetric functions’ [1], and to be isomorphic to the Solomon Descent algebra [12]. This Hopf algebra has links with algebra,topology and combinatorics. In this article we consider another approach of proof for the antipode formula in the Leibniz-Hopf algebra by using some properties of words in [2].

KEYWORDS

Hopf algebra, Leibniz-Hopf algebra, antipode, Steenrod algebra.

Cite this paper

References
[1] M. Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math. 164 (2001)  283–300. 
[2] N.D.Turgay, Some notes on the dual Leibniz-Hopf algebra, Journal of Mathematics and System Science 3 (2013) 573-576.
[3] A. Baker, B. Richter, Quasisymmetric functions from a topological point of view, Math. Scand. 103 (2008) 208–242.
[4] N.E. Steenrod, Cohomology Operations. Ann. Math. Studies, Vol. 50. Princeton: Princeton Univ. Press.1962. 
[5] M.D. Crossley, N.D. Turgay, Conjugation Invariants in the mod 2 dual Leibniz-Hopf algebra, Communications in Algebra 41 (2013) 3261-3266.
[6] M.D. Crossley, N.D. Turgay, Conjugation Invariants in the Leibniz Hopf Algebra Journal of Pure and Applied Algebra 217 (2013) 2247-2254.
[7] N.D. Turgay, A note on conjugation invariants in the dual Leibniz-Hopf algebra 7, no. 17, 809-815 DOI: 10.12988/ ija.2013.31099
[8] M.D. Crossley, S. Whitehouse, On conjugation invariants in the dual Steenrod algebra, P Am Math Soc, 128 (2000) 2809-2818.
[9] M.D. Crossley, S. Whitehouse, Higher conjugation in commutative Hopf algebras, P Edinburgh Math Soc, 44 (2) (2001) 19-26.
[10] M.D. Crossley, Some Hopf Algerabs of Words, Glasg. Math. J. 48 (2006) 575-582.
[11] R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996) 1-25.
[12] C. Malvenuto, C. Reutenauer, Duality between Quasi-Symmetric Functions and the Solomon Descent  Algebra, J. Algebra 177 (1995) 967-982.
[13] N.D. Turgay, Conjugation invariants in Word Hopf algebras, Ph.D. Thesis, Swansea University, Swansea, 2012. 
[14] M.E. Sweedler Hopf algebras, Benjamin, 1969.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]