![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Murat Basal, Khouloud Moulai, Anıl Cetin
Full-Text PDF
XML 524 Views
DOI:10.17265/2328-7144/2025.02.006
Istanbul Gelisim University, Istanbul, Turkiye
artificial intelligence, customer behavior, health sector, prediction, analytics
Economics World, Apr.-June 2025, Vol. 12, No. 2, 142-154
doi: 10.17265/2328-7144/2025.02.006Agwu, O. E., Akpabio, J. U., Alabi, S. B., & Dosunmu, A. (2018). Artificial intelligence techniques and their applications in drilling fluid engineering: A review. Journal of Petroleum Science and Engineering, 167, 300-315.
Akila, V., Anita C. J., Jothi M. A., & Meenakshi, K. (2021). Reinforcement learning for walking robot. IOP Conference Series: Materials Science and Engineering, 2021, № 1, p. 012075, doi: 10.1088/1757-899X/1070/1/012075.
Alhamad, H., & P. Donyai, P. (2021). The validity of the theory of planned behavior for understanding people’s beliefs and intentions toward reusing medicines. Pharmacy: Journal of Pharmacy Education and Practice, 9(1), 58, Mar. 2021, doi: 10.3390/PHARMACY9010058.
Berlyand, Y., Raja, A. S., Dorner, S. C., Prabhakar, A. M., Sonis, J. D., Gottumukkala, R. V., ... & Yun, B. J. (2018). How artificial intelligence could transform emergency department operations. The American Journal of Emergency Medicine, 36(8), 1515-1517.
Čerka, P., Jurgita G., & Gintarė S. (2015). Liability for damages caused by artificial intelligence. Computer Law& Security Review, 31(3), 376-389.
Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023). A systematic literature review on identifying patterns using unsupervised clustering algorithms: A data mining perspective. Symmetry, 15(9), 1679. https://doi.org/10.3390/sym15091679
Chawla N. V., & Karakoulas, G. (2005). Leaming from labeled and unlabeled data: An empirical study across techniques and domains. Journal of Artificial Intelligence Research, 23, pp. 331-366, doi: 10.1613/JAIR.1509.
Ghosh S., & Banerjee, C. (2020). A predictive analysis model of customer purchase behaviour using modified random forest algorithm in cloud environment. 2020 IEEE International Conference for Convergence in Engineering proceedings, September 5-6, Kolkata, India, pp. 1-6. doi: 10.1109/ICCE50343.2020.9290700.
Guo, L., Zhang, B., & Zhao, X. (2021). A consumer behavior prediction model based on multivariate real-time sequence analysis. Math Probl Eng, 2021, doi: 10.1155/2021/6688750.
Hardin F. F., & Ricks J. M. (2017). Attitudes, social norms and perceived behavioral control factors influencing participation in a cooking skills program in rural central Appalachia. Global Health Promotion, 24(4), 43-52. doi:10.1177/1757975916636792
Iyortsuun, N. K., Kim, S. H., Jhon, M., Yang, H. J., & Pant, S. (2023). A review of machine learning and deep learning approaches on mental health diagnosis. Healthcare, 11(3), 285. https://doi.org/10.3390/healthcare11030285
Jang, M. K., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A comprehensive classification and applications. IEEE Access, vol. 7, pp. 133653-133667, doi: 10.1109/ACCESS.2019.2941229.
Kilani, M., & Kobziev, V. (2016). An overview of research methodology in information system (IS). Open Access Library Journal, 3, 1-9. doi: 10.4236/oalib.1103126.
Li, X., Lv, Z., Wang, S., Wei, Z., & Wu, L. (2019). A reinforcement learning model based on temporal difference algorithm. IEEE Access, 7, 121922-121930. Article 8819952. https://doi.org/10.1109/ACCESS.2019.2938240
Mc-Gregor, S. L. T., & Murnane, J. A. (2010). Paradigm, methodology and method: intellectual integrity in consumer scholarship. International Journal of Consumer Studies, 34(4), 419-427, Jul. 2010, doi: 10.1111/J.1470-6431.2010.00883.X.
Osisanwo, F. Y., Akinsola, J. E. T., Awodele, O., Hinmikaiye, J. O., Olakanmi, O., & Akinjobi, J. (2017). Supervised machine learning algorithms: Classification and comparison. International Journal of Computer Trends and Technology (IJCTT), 48(3), 128-138.
Saunders, M. N., Lewis, P., Thornhill, A., & Bristow, A. (2019). Understanding research philosophy and approaches to theory development. In M. N. K. Saunders, P. Lewis, & A. Thornhill (Eds.), Research Methods for Business Students, pp. 128-171. Harlow: Pearson.
Subasi, A. (2020). Practical Machine Learning for Data Analysis Using Python, pp. 323-390, Book, doi: 10.1016/B978-0-12-821379-7.00005-9.
Wu, Y., Wang, Z., Ripplinger, C. M., & Sato, D. (2022). Automated object detection in experimental data using combination of unsupervised and supervised methods. Front. Physiol. 13:805161. doi: 10.3389/fphys.2022.805161