Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Research Department, Agriculture Research and Development Station Șimnic, Craiova, Dolj 200721, Romania
2. University of Agronomical Sciences and Veterinary Medicine of Bucharest, Bucharest 011464, Romania

ABSTRACT

This study focuses on the effect of the total serum protein (TSP) concentrations at 3 days after birth on the health and growth parameters of preweaned female Holstein Friesian calves. A total of 165 female calves were enrolled and evaluated for morbidity which included diarrhea (D), respiratory disease (Rd) and omphalitis (O). Also, calves with more than one disorder in the same time were recorded as multi-morbid. Body weight (BW) was determined at birth, 30 and 60 days of age. Blood samples were taken at 3 days after birth and TSP was determined using a digital Brix refractometer. For statistical analysis all female calves based on TSP concentration were grouped into 3 categories: 1-TSP ≥ 6.2 g/dL, 2-TSP 5.8-6.1 g/dL, and 3-TSP < 5.8 g/dL. Overall, the average of TSP concentration was 6.38 g/dL. The prevalence of diarrhea, respiratory disease (Rd) and omphalitis (O) was 16.96%, 7.88% and 4.85% respectively, in calves with one disorder and 6.06% in calves with D + Rd, 3.64% in calves with Rd + O, 3.03% in calves with O + D, and 3.64% in calves with D + Rd + O. As the TSP concentration in calves decreased from ≥ 6.2 g/dL to < 5.8 g/dL the calf hood disorders increased in female calves with one disorder and with more than one disorder. The female calves with fair to poor immunity (category 3-TSP < 5.8 g/dL) were significantly more likely (OR 6.28, 95% CI 2.91-13.5, p value < 0.001) to be affected by diseases compared with female calves with excellent immunity (category 1-TSP ≥ 6.2 g/dL). Also BW and average daily gain (ADG) at 30 and 62 days of life decreased as TSP concentrations decreased. The female calves with TSP ≥ 6.2 g/dL at 3 days of life had the greatest BW at 30 and 62 days of age (51.8 kg and 77.1 kg respectively) compared with female calves with TSP < 5.8 g/dL at 3 days of life (46.6 and 70.6 kg respectively). Moreover, starter feed intake during the first 30 days of life, 31 to 62 days of life and 1 to 62 days of life was greater in female calves with excellent immunity (TSP ≥ 6.2 g/dL) than female calves with good immunity (TSP 5.8-6.1 g/dL) or with fair to poor immunity (< 5.8 g/dL TSP). Measuring the TSP at 3 days of calf’s life, offers information directly correlated to an individual calf’s immunity status, their likeliness of morbidity, mortality and body development and overall the effectiveness of the colostrum management program in the dairy farm.

KEYWORDS

Immunity categories, diarrheal disease, respiratory disease, omphalitis disease, multiple morbidity, calf starter feed.

Cite this paper

References

[1]       Blättler, U., Hammon, H. M., Morel, C., Philipona, C., Rauprich, A., Romé, V., Le Huërou-Luron, I., Guilloteau, P., and Blum, J. W. 2001. “Feeding Colostrum, Its Composition and Feeding Duration Variably Modify Proliferation and Morphology of the Intestine and Digestive Enzyme Activities of Neonatal Calves.” J. Nutr. 131: 1256-63. doi: 10.1093/jn/131.4.1256.

[2]       Scheuer, B. H., Zbinden, Y., Schneiter, P., Tappy, L., Blum, J. W., and Hammon, H. M. 2006. “Effects of Colostrum Feeding and Glucocorticoid Administration on Insulin Dependent Glucose Metabolism in Neonatal Calves.” Domest. Anim. Endocrinol. 31: 227-45. doi: 10.1016/j.domaniend.2005.11.004.

[3]       McGrath, J. J. 2016. “Accelerated Preweaning Growth Rates in Dairy Calves: Do Antioxidants Have a Place?” Anim. Prod. Sci. 56: 1275-84. https://doi.org/10.1071/AN15310.

[4]       Arthington, J. D., Cattell, M. B., and Quigley, J. D. 2000. “Effect of Dietary IgG Source (Colostrum, Serum, or Milk-Derived Supplement) on the Efficiency of Ig Absorption in Newborn Holstein Calves.” J. Dairy Sci. 83: 1463-7. doi: 10.3168/jds.S0022-0302(00)75018-1.

[5]       Joint FAO/WHO/OIE. 2008. Expert Meeting on Critically Important Antimicrobials. Rome: Report of the FAO/WHO/OIE Expert Meeting FAO Headquarters. https://www.fao.org/documents/card/es/c/3c566f76-caa8-5125-bb06-19f08dc27550.

[6]       Silbergeld, E. K., Graham, J., and Price, L. B. 2008. “Industrial Food Animal Production, Antimicrobial Resistance, and Human Health.” Anim. Rev. Public. Health. 29: 151-69. doi: 10.1146/annurev.publhealth.29.020907.090904.

[7]       Masebo, N. T., Marliani, G., Cavallini, D., Accorsi, P. A., Di Pietro, M., Beltrame, A., Gentile, A., and Jacinto, J. G. P. 2023. “Health Period and Welfare Assessment of Beef Cattle during the Adaptation Period in a Specialized Commercial Fattening Unit.” Research in Veterinary Science 158: 50-5. doi: org/10.1016/j.rvsc.2023.03.008.

[8]       Berge, A. C. B., Besser, T. E., Moore, D. A., and Sischo, W. M. 2009. “Evaluation of the Effects of Oral Colostrum Supplementation during the First Fourteen Days on the Health and Performance of Preweaned Calves.” J. Dairy Sci. 92: 286-95. doi: 10.3168/jds.2008-1433.

[9]       Davis, C. L., and Drackley, J. K. 1998. The Development, Nutrition, and Management of the Young Calf. Ames: Iowa State University Press.

[10]    Barry, J., and Kennedy, E. 2019. “Effect of Feeding Pooled High Quality Colostrum on the Health and Performance of Dairy Calves.” Irish Dairying 2019: 158-9. https://www.teagasc.ie/media/website/publications/2019/Effect-of-feeding-pooled-high-quality-colostrum-on-the-health-and-performance-of-dairy-calves.pdf.

[11]    Chamorro, M. F., Cernicchiaro, N., and Haines, D. M. 2017. “Evaluation of the Effects of Colostrum Replacer Supplementation of the Milk Replacer Ration on the Occurrence of Disease, Antibiotic Therapy, and Performance of Pre-weaned Dairy Calves.” J. Dairy Sci. 100 (2): 1378-87. https://doi.org/10.3168/jds.2016-11652.

[12]    Jones, C. M., James, R. E., Quigley III, J. D., and McGilliard, M. L. 2004. “Influence of Podded Colostrum or Colostrum Replacement on IgG and Evaluation of Animal Plasma in Milk Replacer.” J. Dairy Sci. 87: 1806-14. doi: 10.3168/jds.S0022-0302(04)73337-8.

[13]    Mcgrath, B. A., Fox, P. F., Mcsweeney, P. L. H., and Kelly, A. I. 2016. “Composition and Properties of Bovine Colostrum. A Review.” Dairy Sci. & Technol. 96: 133-58. doi: 10.1007/s13594-015-0258-x.

[14]    Fischer, A. J., Malmuthuge, N., Guan, L. L., and Steele, M. A. 2018. “Short Communication: The Effect of Heat Treatment of Bovine Colostrum on the Concentration of Oligosaccharides in Colostrum and in the Intestine of Neonatal Male Holstein Calves.” J. Dairy Sci. 101: 401-7. doi: org/10.3168/jds.2017-13533.

[15]    Saif, L. J., and Bohl, E. H. 1983. “Passive Immunity to Transmissible Gastroenteritis Virus: Intramammary Viral Inoculation of Shows.” Ann. N.Y. Acad. Sci. 409: 708-23. doi: 10.1111/j.1749-6632.1983.tb26910.x.

[16]    Godden, S. M., Lombard, J. E., and Woolums, A. R. 2019. “Colostrum Management for Dairy Calves.” Veterinary Clinics of North America: Food Animal Practice 35: 535-56. doi: 10.1016/j.cvfa.2019.07.005.

[17]    Hammon, H. M., Steinhoff-Wagner, J., Flor, J., Schönhusen, U., and Metges, C. C. 2013. “Lactation Biology Symposium: Role of Colostrum and Colostrum Components on Glucose Metabolism in Neonatal Calves.” J. Anim. Sci. 91: 685-95. doi: 10.2527/jas.2012-5758.

[18]    Lombard, J., Urie, N., Garry, F., Godden, S., Quigley, J., Earleywine, T., McGuirk, S., Moore, D., Branan, M., Chamorro, M., Smith, G., Shivley, C., Catherman, D., Haines, D., Heinrichs, A. J., James, R., Maas, J., and Sterner, K. 2020. “Consensus Recommendations on Calf- and Herd-Level Passive Immunity in Dairy Calves in the United States.” J. Dairy Sci. 103: 7611-24. doi: 10.3168/jds.2019-17955.

[19]    European Parliament and Council. 2010. “Directive 2010/63 EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes.” Off. J. Eur. Union. 276: 33-79.

[20]    European Communities Council. 2009. “Directive 2008/119/EC of 18 December 2008. Laying Down Minimum Standards for the Protection of Calves.” Off. J. Eur. Union 10: 7-13.

[21]    Love, W. J., Lehenbauer, T. W., Kass, P. H., Van Eenennaam, A. L., and Aly, S. S. 2014. “Development of a Novel Clinical Scoring System for On-Farm Diagnosis of Bovine Respiratory Disease in Pre-weaned Dairy Calves.” PeerJ 2: e238. https://doi.org/10.7717/peerj.238.

[22]    Oltramari, C. E., Nápoles, G. G. O., De Paula, M. R., Silva, J. T., Gallo, M. P. C., Pasetti, M. H. O., and Bittar, C. M. M. 2016. “Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn.” Asian-Australas J. Anim. Sci. 29 (7): 971-8. doi: 10.5713/ajas.15.0550.

[23]    Morrill, K. M., Polo, J., Lago, A., Campbell, J., Quigley, J., and Tyler, H. 2013. “Estimate of Serum Immunoglobulin G Concentration Using Refractometry with or without Caprylic Acid Fractionation.” J. Dairy Sci. 96: 4535-41. doi: 10.3168/jds.2012-5843.

[24]    Deelen, S., Ollivett, T., Haines, D., and Leslie, K. 2014. “Evaluation of Brix Refractometer to Estimate Serum Immunoglobulin G concentration in Neonatal Dairy Calves.” J. Dairy Sci. 97: 3838-44. doi: 10.3168/jds.2014-7939.

[25]    Elsohaby, I., McClure, J. S., and Keefe, G. P. 2015. “Evaluation of Digital and Optical Refractometers for Assessing Failure of Transfer of Passive Immunity in Dairy Calves.” J. Vet. Intern. Med. 29: 721-6. doi: 10.1111/jvim.12560.

[26]    Quigley, J. 2016. CalfNotes.com. http://www.calfnotes.com.

[27]    Buonaiuto, G., Lopez-Villalobos, N., Niero, G., Deganoi, L., Dadati, E., Formigoni, A., and Visentin, G. 2022. “The Application of Legendre Polynomials to Model Muscularity and Body Condition Score in Primiparous Italian Simmental Cattle.” Ital. J. Anim. Sci. 21: 350-60. doi: 10.1080/1828051X.2022.2032850.

[28]    Cavallini, D., Raspa, F., Marliani, G., Nannoni, E., Martelli, G., Sardi, L., Valle, E., Pollesel, M., Tassinari, M., and Buonaiuto, G. 2023. “Growth Performance and Feed Intake Assessment of Italian Holstein Calves Fed a Hay-Based Total Mixed Ration: Preliminary Steps towards a Prediction Model.” Vet. Sci. 10 (9): 554. doi: 10.3390/vetsci10090554.

[29]    Cuttance, E. L., Regnerus, C., and Laven, R. A. 2019. “A Review of Diagnostic Tests for Diagnosing Failure of Transfer of Passive Immunity in Dairy Calves in New Zealand.” New Zealand Veterinary Journal 67: 277-86. doi: 10.1080/00480169.2019.1654945.

[30]    Hue, D. T., Williams, J. L., Petrovski, K., Bottema, C. D. K. 2021. “Predicting Colostrum and Calf Blood Components Based on Refractometry.” Journal of Dairy Research 88: 194-200. doi: 10.1017/S0022029921000340.

[31]    Aghakhani, M., Shahraki, A. D. F., Tabatabaei, S. N., Toghyani, M., Moosavi-Zadeh, E., and Rafiee, H. 2023. “24-Hour Postnatal Total Serum Protein Concentration Affects the Health and Growth Performance of Female Holstein Dairy Calves.” Vet. Med. Sci. 9 (5): 2230-37. doi: 10.1002/vms3.1203.

[32]    Thornhill, J. B., Krebs, G. L., and Petzel, C. E. 2015. “Evaluation of the Brix Refractometer as an On-Farm Tool for the Detection of Passive Transfer of Immunity in Dairy Calves.” Aust. Vet. J. 93: 26-30. doi: 10.1111/avj.12287.

[33]    Hue Do, T., Skirving, R., Chen, T., Williams, J. L, Bottema, C. D. K., and Petrovski, K. 2021. “Colostrum Source and Passive Immunity Transfer in Dairy Bull Calves.” Journal of Dairy Science 104: 8164-76. doi: 10.3168/jds.2020-19318.

[34]    Piccione, G., Cassella, S., Pennisi, P., Giannetto, C., Costa, A., and Caola, G. 2010. “Monitoring of Physiological and Blood Parameters during Perinatal and Neonatal Period in Calves.” Arq. Bras. Med. Vet. Zootec. 62: 1-12. https://doi.org/10.1590/S0102-09352010000100001.

[35]    Skrzypczak, W. F., Ozgo, M., Lepczynski, A., and Herosimczyk, A. 2011. “Defining the Blood Plasma Protein Repertoire on Seven Day Old Dairy CalvesA Preliminary Study.” J. Physiol. Pharmacol. 62: 313-9.

[36]    Brunauer, M., Roch, F. F., and Conrady, B. 2021. “Prevalence of Worldwide Neonatal Calf Diarrhoea Caused by Bovine Rotavirus in Combination with Bovine Coronavirus, Escherichia coli K99 and Cryptosporidium spp.: A Meta-Analysis.” Animals 11 (4): 1014. doi: 10.3390/ani11041014.

[37]    Grünberg, W. 2021. “Diarrhea in Neonatal Ruminants.” https://www.msdvetmanual.com/digestive-system/intest
inal-diseases-in-ruminants/diarrhea-in-neonatal-ruminan
ts
.

[38]    Donlon, J., Mee, J. F., and McAloon, C. G. 2023. “Prevalence of Respiratory Disease in Irish Preweaned Dairy Calves Using Hierarchical Bayesian Latent Class Analysis.” Front. Vet. Sci. 10: 1149929. https://doi.org/10.3389/fvets.2023.1149929.

[39]    Maier, G. U., Love, W. J., Karle, B. M., Dubrovsky, S. A., Williams, R. D., Champagne, J. D., Anderson, R. J., Rowe, J. D., Lehenbauer, T. W., Van Eenennaam, A. L., and Aly, S. S. 2019. “Management Factors Associated with Bovine Respiratory Disease in Preweaned Calves on California Dairies: The BRD 100 Study.” Journal of Dairy Science 102 (8): 7288-305. doi: 10.3168/jds.2018-14773.

[40]    Timsit, E., Dendukuri, N., Schiller, I., and Buczinski, S. 2016. “Diagnostic Accuracy of Clinical Illness for Bovine Respiratory Disease (BRD) Diagnosis in Beef Cattle Placed in Feedlots: A Systematic Literature Review and Hierarchical Bayesian Latent-Class Meta-Analysis.” Prev. Vet. Med. 135: 67-73. doi: 10.1016/j.prevetmed.2016.11.006.

[41]    Mahendran, S. A., Booth, R., Beekhuis, L., Manning, A., Blackmore, T., Vanhoudt, A., and Bell, N. 2017. “Assessing the Effects of Weekly Preweaning Health Scores on Dairy Calf Mortality and Productivity Parameters: Cohort Study.” Vet. Rec. 181: 196. doi: 10.1136/vr.104197.

[42]    Buczinski, S., Achard, D., and Timsit, E. 2021. “Effects of Calfhood Respiratory Disease on Health and Performance of Dairy Cattle: A Systematic Review and Meta-Analysis.” J. Dairy Sci. 104 (7): 8214-27. doi: 10.3168/jds.2020-19941.

[43]    Kharb, S., Yadav, A., Kumar, T., and Sindhu, N. 2021. “Umbilical Infections in Calves Reared under Traditional System and Their Management.” Indian J. Vet. M. 41 (1): 61-4. https://www.researchgate.net/publication/35733964
2_Umblical_infection.

[44]    Perrot, F., Joulie, A., Herry, V., Masset, N., Lemaire, G., Barral, A., Raboisson, D., Roy, C., and Herman, N. 2023. “Failure of Passive Immunity Transfer Is Not a Risk Factor for Omphalitis in Beef Calves.” Vet. Sci. 10 (9): 544. https://doi.org/10.3390/vetsci10090544.

[45]    McGuirk, S. M. 2008. “Disease Management of Dairy Calves and Heifers.” Vet. Clin. North Am. Food Anim. Pract. 24: 139-53. doi: 10.1016/j.cvfa.2007.10.003.

[46]    Elsohaby, I., Cameron, M., Elmoslemany, A., McClure, J. T., and Keefe, G. 2019. “Effect of Passive Transfer of Immunity on Growth Performance of Preweaned Dairy Calves.” Can. Jo. Vet. Res. 83 (2): 90-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450162/.

[47]    Overton, M. W., and Dhuyvetter, K. C. 2020. “Symposium Review: An Abundance of Replacement Heifers: What Is the Economic Impact of Raising More Than Are Needed?” Journal of Dairy Science 103 (4): 3828-37. https://doi.org/10.3168/jds.2019-17143.

[48]    Stefańska, B., Gąsiorek, M., and Nowak, W. 2021. “Short- and Long-Term Effects of Initial Serum Total Protein, Average Starter Feed Intake during Last Week of the Preweaning Period, and Rearing Body Gain on Primiparous Dairy Heifers’ Performance.” Journal of Dairy Science 104: 1645-59. doi: 10.3168/jds.2020-18833.

[49]    Wasowska, E., and Puppel, K. 2018. “Changes in the Content of Immunostimulating Components of Colostrum Obtained from Dairy Cows at Different Levels of Production.” J. Sci. Food. Agric. 98: 5062-8. doi: 10.1002/jsfa.9043.

[50]    Correa, A., Silva-Del-Río, N., Branco-Lopes, R., Ferreira, F., and Valldecabres, A. 2022. “Dynamics of Serum Immunoglobulin G and Total Protein Concentrations in Dairy Calves during the First 2 Weeks of Life.” JDS Communications 3 (6): 416-20. doi: 10.3168/jdsc.2022-0236.

[51]    Wilm, J., Costa, J. H. C., Neave, H. W., Weary, D. M., and von Keyserlingk, M. A. G. 2018. “Technical Note: Serum Total Protein and Immunoglobulin G Concentrations in Neonatal Dairy Calves over the First 10 Days of Age.” J. Dairy Sci. 101: 6430-6. doi: 10.3168/jds.2017-13553.

[52]    Lopez, A. J., Jones, C. M., Geiger, A. J., and Heinrichs, A. J. 2020. “Comparison of Immunoglobulin G Absorption in Calves Fed Maternal Colostrum: A Commercial Whey-Based Colostrum Replacer or Supplemental Maternal Colostrum.” J. Dairy Sci. 103: 4838-45. doi: 10.3168/jds.2019-17949.

[53]    Roadknight, N., Wales, W., Jongman, E., Courtman, N., Mansell, P., Woodward, A. P., and Fisher, A. 2021. “Can Calf Age Be Estimated Using a Combination of Serum Gamma-Glutamyl Transferase, Total Protein Immunoglobulin G?” Res. Vet. Sci. 141: 14-8. doi: 10.1016/j.rvsc.2021.10.002.

[54]    Muca, E., Buonaiuto, G., Lamanna, M., Silvestrelli, S., Ghiaccio, F., Federiconi, A., De Matos Vettori, J., Colleluori, R., Fusaro, I., Raspa, F., Valle, E., Formigoni, A., and Cavallini, D. 2023. “Reaching a Wider Audience Instagram’s Role in Dairy Cow Nutrition Education and Engagement.” Animals 13 (22): 3503. https://doi.org/10.3390/ani13223503..

[55]    Muca, E., Cavallini, D., Raspa, F., Bordin, C., Bergero, D., and Valle, E. 2023. “Integrating New Learning Methods into Equine Nutrition Classrooms: The Importance of Students’ Perceptions.” Journal of Equine Veterinary Science 126: 104537. doi: 10.1016/j.jevs.2023.104537.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]