Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
3. Soil and Fertilizer Institute, Academy of Agricultural and Forestry, Qinghai University, Xining 810016, Qinghai, China
4. Nuomuhong Farm, Dulan 816199, Qinghai, China
5. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China

ABSTRACT

Excessive amounts of nitrogen (N) fertilizers are applied during wolfberry production, resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau. In this study, organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels. N fertilizer rates had 0, 50, 100, 150, 200, and 250 g N/plant. Organic fertilizer rates had 0, 2, 4, 6, 8, and 10 kg organic fertilizer/plant. The experimental treatments included 6 combinations of N0M10, N50M8, N100M6, N150M4, N200M2, and control was N250M0. The results showed that in the high-fertility soils, combinations of N150M4, N100M6 and N50M8 treatments were increased in yields, fruit shape index, flavonoid content, total phenol content, mineral nutrient content, and antioxidant activity of wolfberry fruits. Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm. In the soil with less fertility, fruit yield, amino acid contents, flavonoids, total phenols, mineral nutrients and antioxidant activity of fruits were increased by the N200M2, N150M4 and N100M6 treatments and soil fertility was improved as well. Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control. Therefore, in the Qinghai-Tibet Plateau, combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching. In conclusion, 50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.

KEYWORDS

Wolfberry, fruit quality, antioxidant activity, organic fertilizer, nitrogen fertilizer.

Cite this paper

References


[1]       Godfray, H., Charles, J., and Garnett, T. 2014. “Food Security and Sustainable Intensification.” Phil. Trans. R. Soc. B369: 20120273.

[2]       Jiang, Z. X., Zheng, H., and Xing, B. S. 2021. “Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies.” Sci. Total Environ. 760: 143342. doi: 10.1016/j.scitotenv.2020.143342.

[3]       Liu, J. G., You, L. Z., Manouchehr, A., Michael, O., Mario, H., Alexander, J. B. Z., et al. 2010. “A High-Resolution Assessment on Global Nitrogen Flows in Cropland.” PNAS107 (17): 8035-40.

[4]       David, N., and Ju, X. T. 2015. “Environmental Costs of China’s Food Security.” Agr. Ecosyst. Environ. 209: 5-14.

[5]       Zhang, D. F., Xia, T., Dang, S. F., Fan, G.H., and Wang, Z. L. 2018. “Investigation of Chinese Wolfberry (Lycium spp.) Germplasm by Restriction Site-Associated DNA Sequencing (RAD-seq).” Biochem. Genet. 56(6): 575-85.

[6]       Qian, D., Zhao, Y. X., Yang, G., and Huang, L. Q. 2017. “Systematic Review of Chemical Constituents in the Genus Lycium (Solanaceae).” Molecules 22(6): 911.

[7]       Lu, L., Mi, J.,Jin, B.,Zhang, L. T.,Luo, Q., Li, X. Y., et al. 2023. “Inhibitory Effects of the Anthocyanins from Lycium ruthenicumMurray on Angiotensin-I-Converting Enzyme (ACE): In Vitro and Molecular Docking Studies.” J. Sci Food Agri.103 (14): 7164-75

[8]       Darel, W. K. T., Jasmine,H.M.L., and Jung,E.K. 2022. “Cardiovascular Disease Risk Reduction withWolfberry Consumption: A Systematic Review andMeta-Analysis ofRandomized Controlled Trials.” Eur. J. Nutr. 61: 1177-86.

[9]       Liu, L., Sha, X. Y., Wu, Y. N., Chen, M. T., and Zhong, J. X. 2020. “Lycium barbarum Polysaccharides Protects Retinal Ganglion Cells against Oxidative Stress Injury.” Neural Regen. Res. 15 (8): 1526-31.

[10]    Lakshmanan, Y.,Wong, F. S. Y.,So, K.F., andChan, H. H.. 2023. “Potential Role of Lycium barbarum Polysaccharides in Glaucoma Management: Evidence from Preclinical in Vivo Studies.” Neural Regen Res. 18 (12): 2623-32.

[11]    Gong, G. P., Liu, Q., Deng, Y. N., Dang, T. T., Dai, W., Liu, T. T., et al. 2020. “Arabinogalactan Derived from Lycium barbarum Fruit Inhibits Cancer Cell Growth via Cell Cycle Arrest and Apoptosis.” Int. J. Biol. Macromol. 149: 639-50.

[12]    Agnieszka, K. C., Dimitri, B., Isabelle, M.,and Wilfried, A. 2017. “Stability of Goji Bioactives during Extrusion Cooking Process.” Food Chem. 230: 250-6.

[13]    Dzhugalov, H., Lichev, V., Yordanov, A., Kaymakanov, P., Dimitrova, V., and Kutoranov, G. 2015. “First Results of Testing Goji Berry (Lycium barbarum L.) in Plovdiv Region, Bulgaria.” Sci. Pap-Ser-B-Hortic. 59: 47-50.

[14]    Wang, Y. J., Liang, X. J., Guo, S. J., Li, Y. K., Zhang, B., Yin, Y., et al. 2019. “Evaluation of Nutrients and Related Environmental Factors for Wolfberry (Lycium barbarum) Fruits Grown in the Different Areas of China.” Biochem. Syst. Eco. 86: 103916. https://doi.org/10.1016/j.bse.2019.103916.

[15]    Zhang, G. P., and CaiRang, D. Z. 2023. “Suggestions of the Development of Native Tibetan Medicinal Materials Industry in Qinghai Province.” Qinghai Prataculture 32 (3): 23-7. (in Chinese)

[16]    Luo, X. P. 2019. “Advancement,Current Status and Advantages of Wolfberry Industry in Qinghai Province.”Sci. Tech. Qinghai Agri. Forest.49 (4): 42-45, 81. (in Chinese)

[17]    Yao, R. Y., Michael, H., Wang, Z. G., and Caroline, S. W. 2018. “Quality Control of Goji (Fruits of Lycium barbarum L. and L. chinense Mill.): A Value Chain Analysis Perspective.” J. Ethnopharmac. 224: 349-58.

[18]    Li, H., and Song, W. 2021. “Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau.” Int. J. Environ. Res.Public Health. 18(12): 6508. https://doi.org/10.3390/ijerph18126508.

[19]    Liang, X. J., An, W., Li, Y. K., Wang, Y. J., Qin, X. Y., and Duan, L. Y. 2023. “Response of Lyceum barbarum Root Development and Above-Ground Growth to Different Nitrogen Application Rate.” Acta Agriculturae Boreali-occidentalis Sinic 32(1):72-83. (in Chinese)

[20]    Michaud, A. M., Sappin, D. V., Cambier, P., Nguyen, C., Janot, N., Montenach, D., et al. 2021. “Phytoavailability of Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Tl and Zn in Arable Crop Systems Amended for 13 to 15 Years with Organic Waste Products.” Agronomy 11(4): 664. https://doi.org/10.3390/agronomy11040664.

[21]    Gui, H., Fan, L. C., Wang, D. J., Yan, P., Li, X., Zhang, L. P., et al. 2021. “Organic Management Practices Shape the Structure and Associations of Soil Bacterial Communities in Tea Plantations.” Appl. Soil Ecol.163: 103975. https://doi.org/10.1016/j.apsoil.2021.103975.

[22]    Yang, Y. H., Wu, J. C., Zhao, S. W., Gao, C. M., Pan, X. Y., Tang, D. W. S., et al. 2021. “Effects of Long-Term Super Absorbent Polymer and Organic Manure on Soil Structure and Organic Carbon Distribution in Different Soil Layers.Soil Till. Res. 206: 104781. https://doi.org/10.1016/j.still.2020.104781.

[23]    Yu, G., and Zhou, X. B. 2022. “Effects of Chemical Fertilizer and Organic Fertilizer on Environment.” Agri. Econ. 67 (5): 12-4. (in Chinese)

[24]    Wang, Z. T., Geng, Y. B., and Liang, T. 2020. “Optimization of Reduced Chemical Fertilizer Use in Tea Gardens Based on the Assessment of Related Environmental and Economic Benefits.” Sci. Total Environ. 713: 136439. https://doi.org/10.1016/j.scitotenv.2019.136439.

[25]    Chen, W. Y.,Zhang, X. B., Hu, Y. H., and Zhao, Y. 2024. “Effects of Different Proportions of Organic Fertilizer in Place of Chemical Fertilizer on Microbial Diversity and Community Structure of Pineapple Rhizosphere Soil.” Agronomy14(1): 59. https://doi.org/10.3390/agronomy14010059.

[26]    Wang, L. L., Li, Q., Jeffrey, A. C., Xie, J. H., Luo, Z. Z., Zhang, R. Z., et al. 2020. “Winter Wheat Yield and Water Use Efficiency Response to Organic Fertilization in Northern China: A meta-analysis.” Agr. Water Manage. 229: 105934.https://doi.org/10.1016/j.agwat.2019.105934.

[27]    Zhang, M., Yao, Y. L., Tian, Y. H., Ceng, K., Zhao, M., Zhao, M., et al. 2018. “Increasing Yield and N Use Efficiency with Organic Fertilizer in Chinese Intensive Rice Cropping Systems.” Field Crop Res. 227: 102-9.

[28]    Liu, B., Wang X. Z., Ma, L., Dave, C., and Chen, X. P. 2021. “Combined Applications of Organic and Synthetic Nitrogen Fertilizers for Improving Crop Yield and Reducing Reactive Nitrogen Losses from China’s Vegetable Systems: A Meta-Analysis.” Environ. Pollut.269: 116143. https://doi.org/10.1016/j.envpol.2020.116143.

[29]    Shao, Y. L., Chen, J. N., Wang, L. K., Hou, M. M., and Chen, D. L. 2021. “Effects of Fermented Organic Fertilizer Application on Soil N2O Emission under the Vegetable Rotation in Polyhouse.” Environ. Res. 200: 111491. https://doi.org/10.1016/j.envres.2021.111491.

[30]    Hua, L., Gao, J. N., Zhou, M. F., and Bai, S. L. 2021. “Impacts of Relative Elevation on Soil Nutrients and Apple Quality in the Hilly-gully Region of the Loess Plateau, China.” Sustainability 13: 1293. https://doi.org/10.3390/ su13031293.

[31]    Wang, R., Ting, H., Quan, S., Ji, L. D., Lei, J. Y., and Zhang, J. X. 2021. “Organic Fertilizers and Soil Conditioner Recover Chemical Fertilizer-induced Changes in Soil Bacterial Community Diversity in Wine Grape Rhizosphere Soil.” J. Environ Stud. 30 (2): 1853-63.

[32]    Lu, J.J., Liu, X.H., Xu, S.Q., Yang, L.Y., Zhang, Y., and Sheng, H.Y. 2020. “Effects of Nitrogen Applications on Soil Inorganic Nitrogen in Wolfberry Field of Qaidam.” Acta Agric Boreali-Occident Sin. 29(9): 1389-98. (in Chinese)

[33]    Peinado, J., Lerma, D. L. N., Moreno, J., and Peinado, R. A. 2008. “Antioxidant Activity of Different Phenolics Fractions Isolated in Must from Pedro Ximenez Grapes at Different Stages of the Off-Vine Drying Process.” Food Chem. 114(3): 1050-5.

[34]    Kushwaha, S. C., and Kates, M. 1981. “Modification of Phenol-Sulfuric Acid Method for the Estimation of Sugars in Lipids.” Lipids 16(5): 372-3.

[35]    Wang, P. Y., Shuang, F. F., Yang, J. X., Ju, Y. X., Hu, R. Z., Chen, T., et al. 2022. “A Rapid and Efficient Method of Microwave-Assisted Extraction and Hydrolysis and Automatic Amino Acid Analyzer Determination of 17 Amino Acids from Mulberry Leaves.” Ind. Crop. Prod. 186: 115271. https://doi.org/10.1016/j.indcrop.2022.115271.

[36]    Zhang, Z. F., Lyu, J. Y., Lou, H. Q., Tang, C. C., Zheng, H. X., Chen, S. N., et al. 2020. “Effects of Elevated Sodium Chloride on Shelf‐life and Antioxidant Ability of Grape Juice Sports Drink.” J. Food Process. Pres. 45(1). https://doi.org/10.1111/jfpp.15049.

[37]    Khan, S. A., Liu, L., Lai, T., Zhang, R. F., Wei, Z. C., Xiao, J., et al. 2018. “Phenolic Profile, Free Amino Acids Composition and Antioxidant Potential of Dried Longan Fermented by Lactic Acid Bacteria.” J. Food Sci. Tech. 55 (12): 4782-91.

[38]    Yang, L. C., Li, R., Tan, J., and Jiang, Z. T. 2013. “Polyphenolics Composition of the Leaves of Zanthoxylumbungeanum Maxim. Grown in Hebei, China, and Their Radical Scavenging Activities.” J Agric Food Chem. 61(8): 1772-8.

[39]    Apak, R., Güçlü, K., Ozyürek, M.,and Karademir, S. E. 2004. “Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method.” J. Agri. Food Chem. 52 (26): 7970-81.

[40]    Choi, Y., and Lee, J. 2008. “Antioxidant and Antiproliferative Properties of a Tocotrienol-Rich Fraction from Grape Seeds.” Food Chem. 114 (4): 1386-90.

[41]    Cheng, X. H.,Wang, X. F., Zhang, A., Wang, P. P., Chen, Q. Y., Ma, T. T., et al. 2020. “Foliar Phenylalanine Application Promoted Antioxidant Activities in Cabernet Sauvignon by Regulating Phenolic Biosynthesis.” Agri Food Chem. 68(52): 15390-402.

[42]    Bao, S. D. 2000. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press. (in Chinese)

[43]    Zhang, M. H., Sun, D. Y., Niu, Z. R., Yan, J. X., Zhou, X. L., and Kang, X. 2020. “Effects of Combined Organic/Inorganic Fertilizer Application on Growth, Photosynthetic Characteristics, Yield and Fruit Quality of Actinidia chinesis cv ‘Hongyang’.” Glob. Eco. Conserv. 22:e00997. http//doi:10.1016/j.gecco.2020.e00997.

[44]    Moreno, T., Elena, B., Luciano, C., Martina, M., Maurizio, Q., Giovambattista, S., et al. 2019. “Soil-Plant Nitrogen Pools in Nectarine Orchard in Response to Long-Term Compost Application.” Sci. Total Environ. 671: 10-8.

[45]    Wang, Q., Wen, J., Wen, Y. J., Zhang, Y., Zhang, N., Wang, Y. N., et al. 2021. “Alteration of Soil-Surface Electrochemical Properties by Organic Fertilization to Reduce Dissolved Inorganic Nitrogen Leaching in Paddy Fields.” Soil Till. Res. 209: 104956. https://doi.org/10.1016/j.still.2021.104956.

[46]    Wang, H. X., Xu, J. L., Liu, X. J., Zhang, D., Li, L. E., Li, W., et al. 2019. “Effects of Long-Term Application of Organic Fertilizer on Improving Organic Matter Content and Retarding Acidity in Red Soil from China.” Soil Till. Res. 195:104382-2.

[47]    Liu, X., Xu, G. C., Wang, Q. S., and Hang, Y. H. 2017. “Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.” Front. Plant Sci. 8: 47. https://doi: 10.3389/fpls.2017.00047.

[48]    Li, Z. F.,Rudolf, S., andTorsten, M. 2015. “Mineralization of Legume Seed Meals as Organic Fertilizers Affected by Their Quality at Low Temperatures.” Biol. Agric. Hortic.31(2): 91-107.

[49]    Wan, X. F.,Wang, S.,Zhang, Y.,Wang, T. L.,Ge, Y.,Gao, S. X.,et al. 2021. “Effect of Combined Application of Inorganic andOrganicFertilizers on Growth andQualityof Salvia Miltiorrhiza.” China J. Chinese Materia Medica 46(8): 1927-34. (in Chinese)

[50]    Wang, C. X., Gu, F., Chen, J. L., Yang, H., Jiang, J. J., Du, T. S., et al. 2015. “Assessing the Response of Yield and Comprehensive Fruit Quality of Tomato Grown in Greenhouse to Deficit Irrigation and Nitrogen Application Strategies.” Agr. Water Manage. 161: 9-19.

[51]    Baranski, M., Srednicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G.B., et al. 2014. “Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses.” Brit. J. Nutr. 112(5): 794-811.

[52]    Subhasish, D. K., Charan, T., Sandip, M., Soma, S., Rajesh, K. S., Buddhadeb, D., et al. 2018. “Impact of Edaphic Factors and Nutrient Management on the Hepatoprotective Efficiency of Carlinoside Purified from Pigeon Pea Leaves: An Evaluation of UGT1A1 Activity in Hepatitis Induced Organelles.” Environ. Res. 161: 512-23.

[53]    Tomo, M., Nebojša, M., and Ivan, G. 2013. “Tree Growth, Yield, Fruit Quality Attributes and Leaf Nutrient Content of ‘Roxana’ Apricot as Influenced by Natural Zeolite, Organic and Inorganic Fertilisers.” Sci. Hortic. 156: 131-9.

[54]    Ajoy, S., Basak, B. B., Gajbhiye, N. A., Kalariya, K. A., and Manivel, P. 2019. “Sustainable Fertilization through Co-application of Biochar and Chemical Fertilizers Improves Yield, Quality of Andrographis paniculata and Soil Health.” Ind. Crop. Prod. 140, 111607. https://doi.org/10.1016/j.indcrop.2019.111607.

[55]    Stojanov, D., Milošević, T., Mašković, P., Milošević, N., Glišić, I., and Paunović, G. 2019. “Influence of Organic, Organo-mineral and Mineral Fertilisers on Cane Traits, Productivity and Berry Quality of Red Raspberry (Rubus idaeus L.).” Sci. Hortic. 252: 370-8.

[56]    Gurav, R. G., and Jadhav, J. P. 2013. “A Novel Source of Biofertilizer from Feather Biomass for Banana Cultivation.” Environ. Sci. Pollut. R. 20 (7): 4532-9.

[57]    Shi, Z. G., Wei, F., Wan, R., Li, Y. X., Wang, Y. J., An, W., et al. 2019. “Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the Lycium barbarum L. Fruit.”Molecules 24(21): 3879. https://doi.org/10.3390/molecules24213879.

[58]    Lombardo, S., Restuccia, A., Abbate, C., Anastasi, U., Fontanazza, S., Scavo, A., et al. 2020. “Trifolium Subterraneum Cover Cropping for Improving the Nutritional Status of a Mediterranean Apricot Orchard.” Sci.Food Agric. 101 (9): 3767-77.

[59]    Dahunsi, S. O., Oranusi, S., Efeovbokhan, V. E., Adesulu, D. A. T., and Ogunwole, J. O. 2021. “Crop Performance and Soil Fertility Improvement Using Organic Fertilizer Produced from Valorization of Carica Papaya Fruit Peel.” Sci. Rep. 11(1): 4696. https://doi.org/10.1038/s41598-021-84206-9.

[60]    Sellitto, V. M., Golubkina, N. A., Pietrantonio, L., Cozzolino, E., Cuciniello, A., Cenvinzo, V., et al. 2019. “Tomato Yield, Quality, Mineral Composition and Antioxidants as Affected by Beneficial Microorganisms under Soil Salinity Induced by Balanced Nutrient Solutions.” Agriculture 9(5): 110. https://doi10.3390/agriculture9050110.

[61]    Fredotović, Ž., Šprung, M., Soldo, B., Ljubenkov, I., Budić-Leto, I., Bilušić, T., et al. 2017. “Chemical Composition and Biological Activity of Allium cepa L. and Allium×Cornutum (Clementi ex Visiani 1842) Methanolic Extracts.” Molecules 22(3): 448. https://doi:10.3390/molecules22030448.

[62]    Limmongkon, A., Nopprang, P., Chaikeandee, P., Somboon, T., Wongshaya, P., and Pilaisangsuree, V. 2018. “LC-MS/MS Profiles and Interrelationships between the Anti-inflammatory Activity, Total Phenolic Content and Antioxidant Potential of Kalasin 2 Cultivar Peanut Sprout Crude Extract.” Food Chem. 239: 569-78.

[63]    Rostaei, M., Fallah, S., Lorigooini, Z., and Surki, A. A. 2018. “The Effect of Organic Manure and Chemical Fertilizer on Essential Oil, Chemical Compositions and Antioxidant Activity of Dill (Anethum graveolens) in Sole and Intercropped with Soybean (Glycine max).” J. Clean. Prod. 199:18-26.

[64]    Fallah, S., Rostaei, M., Lorigooini, Z.,and Surki, A. A. 2018. “Chemical Compositions of Essential Oil and Antioxidant Activity of Dragonhead (Dracocephalum moldavica) in Sole Crop and DragonheadSoybean (Glycine max) Intercropping System under Organic Manure and Chemical Fertilizers.” Ind. Crop. Prod. 115: 158-65.

Gultekin, H., Eleni, C., Wang, J., Marcin, B., Nikolaos, V., Panagiotis, P., et al. 2021. “Effect of Organic and Conventional Production Methods on Fruit Yield and Nutritional Quality Parameters in Grapes Made from Three Traditional Cretan Grape Varieties: Results from a Farm Survey.” Foods 10(2): 476.https://doi:10.3390/foods10020476.


About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]