[email protected] | |
3275638434 | |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Nymfodora-Maria Raftopoulou, Petros L. Pallis
Full-Text PDF XML 546 Views
DOI:10.17265/2159-5526/2023.03.006
EDISINET S.A., Thessaloniki; Athens University of Economics and Business, Athens, Greece; EDISINET S.A., Thessaloniki; University of Piraeus, Piraeus, Greece
gamified education, in-game data analytics, personalized feedback report dashboard, recommendation systems, statistics
Nymfodora-Maria Raftopoulou, Petros L. Pallis. Gamified Learning Systems’ Personalized Feedback Report Dashboards via Custom Machine Learning Algorithms and Recommendation Systems. Sociology Study, May-June 2023, Vol. 13, No. 3, 161-173
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer.
Baran, R., Dziech, A., & Zeja, A. (2018). A capable multimedia content discovery platform based on visual content analysis and intelligent data enrichment. Multimedia Tools and Applications, 77(11), 14077-14091.
Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., & Gipp, B. (2016). Towards reproducibility in recommender-systems research. User Modeling and User-Adapted Interaction, 26(1), 69-101.
Brusilovsky, P., Kobsa, A., & Nejdl, W. (2007). The adaptive web: Methods and strategies of web personalization. Springer.
Chen, H.-H., Ororbia II, A. G., & Giles, C. L. (2015). ExpertSeer: A keyphrase based expert recommender for digital libraries. Retrieved from https://arxiv.org/abs/1511.02058
Chen, Η.-H., Gou, L., Zhang, X., & Giles, C. L. (2011). CollabSeer: A search engine for collaboration discovery. In JCDL’11: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries (pp. 231-240).
Ekstrand, M. D., Ludwig, M., Konstan, J. A., & Riedl, J. T. (2011). Rethinking the recommender research ecosystem: Reproducibility, openness, and LensKit. In RecSys’11: Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 133-140).
Felfernig, A., Isak, K., Szabo, K., & Zachar, P. (2007). The VITA financial services sales support environment. In IAAI’07: Proceedings of the 19th National Conference on Innovative Applications of Artificial Intelligence (pp. 1692-1699).
Ferrari Dacrema, M., Boglio, S., Cremonesi, P., & Jannach, D. (2021). A troubling analysis of reproducibility and progress in recommender systems research. ACM Transactions on Information Systems, 39(2), 1-49.
Ferrari Dacrema, M., Cremonesi, P., & Jannach, D. (2019). Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In RecSys’19: Proceedings of the 13th ACM Conference on Recommender Systems (pp. 101-109).
Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21(3), 768-769.
Frost, J. (2019). Percentiles: Interpretations and calculations. Retrieved from https://statisticsbyjim.com/basics/percentiles/
Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4), 1-19.
Grossman, L. (2010). How computers know what we want—Before we do. Retrieved from https://web.archive.org/web/20100530064045/http:/www.time.com/time/magazine/article/0,9171,1992403,00.html
Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., & Zadeh, R. B. (2013). WTF: The who to follow service at Twitter. In WWW’13: Proceedings of the 22nd International Conference on World Wide Web (pp. 505-514).
Hoekstra, R. (2010). The knowledge reengineering bottleneck. Semantic Web – Interoperability, Usability, Applicability 1 (2010) 1, IOS Press. Retrieved from https://www.semantic-web-journal.net/sites/default/files/swj32.pdf
Jafarkarimi, H., Sim, A. T. H., & Saadatdoost, R. (2012). A naïve recommendation model for large databases. International Journal of Information and Education Technology, 2(3), 216-219.
Konstan, J. A., & Adomavicius, G. (2013). Toward identification and adoption of best practices in algorithmic recommender systems research. In RepSys’13: Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation (pp. 23-28).
Kreyszig, E. (1979). Advanced engineering mathematics (4th ed.). Wiley.
Ma, Y., Narayanaswamy, B., Lin, H., & Ding, H. (2020). Temporal-contextual recommendation in real-time. In KDD’20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2291-2299).
Melville, P., & Sindhwani, V. (2010). Recommender systems. Encyclopedia of Machine Learning. Retrieved from https://www.prem-melville.com/publications/recommender-systems-eml2010.pdf
Mooney, R. J., & Roy, L. (1999). Content-based book recommending using learning for text categorization. Proceedings from the SIGIR-99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley, CA, August 1999. Retrieved from https://www.cs.utexas.edu/users/ml/papers/libra-sigir-wkshp-99.pdf
Raftopoulou, N.-M., & Pallis, P. L. (2023a). Formulating innovative societal educational learning systems using gamification techniques in 3D environments. Sociology Study, 13(1), 25-37.
Raftopoulou, N.-M., & Pallis, P. L. (2023b). Establishing an appealing cross-platform innovative educational gamified learning system product: A complete user experience case study. Proceedings from the 4th Global Conference on Education and Teaching. Athens, Greece.
Raimond, Y., & Basilico, J. (2018). Deep learning for recommender systems. Deep Learning Re-Work SF Summit. Retrieved from https://www.slideshare.net/moustaki/deep-learning-for-recommender-systems-86752234
Rendle, S., Krichene, W., Zhang, L., & Anderson, J. (2020). Neural collaborative filtering vs. matrix factorization revisited. In RecSys’20: Proceedings of the 14th ACM Conference on Recommender Systems (pp. 240-248).
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Ricci, F., Rokach, L., & Shapira, B. (2022). Recommender systems: Techniques, applications, and challenges. In F. Ricci, L. Rokach, and B. Shapira (Eds.), Recommender systems handbook (3rd ed., pp. 1-35). New York: Springer.
Said, A., & Bellogín, A. (2014). Comparative recommender system evaluation: Benchmarking recommendation frameworks. In RecSys’14: Proceedings of the 8th ACM Conference on Recommender Systems (pp. 129-136).
Schifferer, B., Deotte, C., Puget, J.-F., de Souza Pereira, G., Titericz, G., Liu, J., & Ak, R. (2021). Using deep learning to win the Booking.com WSDM WebTour21 challenge on sequential recommendations. Proceedings from the WSDM’21: ACM Conference on Web Search and Data Mining WebTour. March 12, Jerusalem, Israel.
Singhal, A. (2001). Modern information retrieval: A brief overview. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 24(4), 35-43.
Sun, Z., Yu, D., Fang, H., Yang, J., Qu, X., Zhang, J., & Geng, C. (2020). Are we evaluating rigorously? Benchmarking recommendation for reproducible evaluation and fair comparison. In RecSys’20: Proceedings of the 14th ACM Conference on Recommender Systems (pp. 23-32).
Volkovs, M., Rai, H., Cheng, Z., Wu, G., Lu, Y., & Sanner, S. (2018). Two-stage model for automatic playlist continuation at scale. In RecSys Challenge’18: Proceedings of the ACM Recommender Systems Challenge 2018 (pp. 1-6).