Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Biomass Laboratory, School of Chemistry, University of Costa Rica 11501-2060, Costa Rica

ABSTRACT

Drying kinetics for alcohol-soaked type-A zeolite (pore size 0.5 nm) was determined at 50 °C for 12 small-molecule alcohols (from C1 to C10). The second-phase of drying of wet porous materials reports on the mass-transfer characteristics within the solid matrices. This stage follows pseudo first-order kinetics (k1), and the second-order rate constant k2 = k1/(fluxional area) was found to correlate with the surface tension of the liquids imbibing the solid matrix (p < 0.002). k2 values decrease along the homologous linear alcohols, and branched-chain alcohols diffuse faster than their linear analogues due to their lower surface tensions. No independent contribution was found from the molecular size of the alcohols in the experiment reported here. Characteristic velocity and enthalpy of vaporisation of the liquids were not found to be significant independent variables, either. The find agrees with the notion that liquid movement in pores is governed during the drying processes by the liquid chemical potential gradient between the pore space and gas phase above the porous particle surfaces, this gradient being a function of the molecular cohesion of the moving liquid front (surface tension, γ). The results can be expressed by the linear Gibbs-energy relation log (k2/s-1•m-2) = (2.5 ± 0.5) - (1.6 ± 0.2)  102 (γ/J•m-2).

KEYWORDS

Drying kinetics, liquid diffusion through pores, surface tension, heterogeneous catalysis.

Cite this paper

Journal of Materials Science and Engineering A 11 (4-6) (2021) 48-55

References

[1] Shivaku, R., and Maitra, S. 2019. “Evaluation of Pore Size and Surface Morphology during Devolatilization of Coconut Fibre and Sugar Cane Bagasse.Combust. Sci. Technol. doi: 10.1080/00102202.299019.1645655.

[2] Fatehi, H., and Bai, X.-S. 2015. “Effect of Pore Size on the Gasification of Biomass Char.Energy Procedia 75: 779-85.

[3] Puente-Urbina, A., Morales-Aymerich, J. P., Kim, Y. S., and Mata-Segreda, J. F. 2016. “Drying Kinetics as Assessment of Relative Energy Cost for Drying of Woody Biomasses.Int. J. Renew. Energy & Biofuels. doi: 10.5171/2016.701233.

[4] Helfferich, F. G. 2004. “Heterogeneous Catalysis.” In Comprehensive Chemical Kinetics, vol. 40, chapter 9, 2nd ed., Elsevier, 273-308.

[5] Fogler, H. S. 2001. Elementos de Ingeniería de las Reacciones Químicas. Chapter 11, 3rd Spanish ed., Mexico: Pearson Education, 738-46.

[6] Conejo-Barboza, G., and Mata-Segreda, J. F. 2018. “Drying Kinetics as Tool for the Assessment of Dynamic Porosity of Catalyst-Support Materials.Int. J. Renew. Energy & Biofuels. doi: 10.5171/2018.901967.

[7] Zhou, C., Liu, C., Liang, J., and Wang, S. 2018. “Numerical Simulation of Pollutant Transport in Soils Surrounding Subway Infrastructure.” Environ. Sci. Pollution Res. 25: 6859-69.

[8] Yabushita, M., Li, P., Kobayashi, H., Fukuoka, A., Farha, O. K., and Katz, A. 2016. “Complete Furanics-Sugar Separations with Metal-Organic Framework NU-1000.” Chem. Commun. 52: 11791-4.

[9] Kim, J., Maiti, A., Lin, L.-C., Stolaroff, J. K., Smit, B., and Aines, R. D. 2013. “New Materials for Methane Capture from Dilute and Medium Sources.” Nature Commun. 4: 1694. doi: 10.1038/ncomms2697.

[10] Song, Z., Nambo, A., Tate, K. L., Bas, A., Zhu, M., Jasinski, J. B., Zhou, S. J., Meyer, H. S., Carreon, M. A., Li, S., and Yu, M. 2016. “Nanovalved Adsorbents for CH4 Storage.” Nano Letters 16: 3309-13.

[11] Mezedur, M. M., Kaviany, M., and Moore, W. 2002. “Effect of Pore Structure, Randomness, and Size on Effective Mass Diffusivity.AICE J 48 (1): 15-24.

[12] Rahimi, P., and Ward, C. A. 2005. “Kinetics of Evaporation: Statistical Rate Theory Approach.Int. J. Thermodyn. 8: 1-14.

[13] Geankoplis, C. J. 2006. Procesos de Transporte y Principios de Procesos de Separación. 4th Spanish ed., México: Compañía Editorial Continental, 589-94.

[14] Weisz, P. B. 1995. “Molecular Diffusion in Microporous Materials: Formalisms and Mechanisms.Ind. Eng. Chem. Res. 34: 2692-9.

[15] De Gennes, P.-G., Brochard-Wyart, F., and Quéré, D. 2004. Capillarity and Wetting Phenomena. New York: Springer, 21.

[16] Bondi, A. 1964. “Van der Waals Volumes and Radii.J. Phys. Chem. 68: 441-51.

[17] Hildebrand, J. H., and Scott, R. L. 1964. The Solubility of Nonelectrolytes. 3rd ed., New York: Dover.

[18] Sharma, S., and Debenedetti, P. G. 2012. “Evaporation Rate of Water in Hydrophobic Confinement. Proc. Natl. Acad. Sci. (USA) 109: 4365-70.

[19] Weijs, J. H., Marchand, A., Andreotti, B., Lohse, D., and Snoeijer, J. H. 2011. “Origin of Line Tension for a Lennard-Jones Nanodroplet.Phys. Fluids 23: 022001.

[20] Vasanthi, R., Bhattacharyya, S., and Bagchi, B. 2002. “Anisotropic Diffusion of Spheroids in Liquids: Slow Orientational Relaxation of the Oblates. J. Chem. Phys. 116: 1092-6.

[21] Chan, T, C., Li, H. T., and Li, K. Y. 2015. “Effects of Shapes of Solute Molecules on Diffusion: A Study of Dependences on Solute Size, Solvent, and Temperature. J. Phys. Chem. B 119: 15718-28.

[22] Ghorai, P. Kr., Yashonath, S., Demontis, P., and Suffritti, G. B. 2003. “Diffusion Anomaly as a Function of Molecular Length of Linear Molecules: Levitation Effect. J. Am. Chem. Soc. 125: 7116-23.

[23] Song, C., Garcés, J. M., and Sugi, Y. 2003. Shape-Selective Catalysis, ACS Symposium Series. Washington, DC: American Chemical Society.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]