![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Multiconfigurational Study of the Electronic Structure of Negatively Charged Fullerens
Fereshteh Naderi1 and Valera Veryazov
Full-Text PDF
XML 1367 Views
DOI:10.17265/1934-7375/2017.01.005
Multiconfigurational second order perturbation theory was employed in order to describe the ground and excited states of C_60^(-n). Different choices of the active spaces are discussed and the possibility to apply multiconfigurational theory to study C_120 is investigated. The calculations were performed for all possible spin states (for selected charge) and show the preference of low spin state. The energy difference between two C_60^(-3) and pairs C_60^(-1)- C_60^(-5) and C_60^(-2)- C_60^(-4) shows that the probability to create a charge alternation in fullerides is small.
Fullerenes, fullerides, multiconfigurational theory, electronic structure
[1] Takeya, H., Miyazawa, K., Kato, R., Wakahara, T., Ozaki, T., Okazaki, H., Yamaguchi, T., and Takano, Y. 2012.“Superconducting Fullerene Nanowhiskers.” Molecules 17: 4851-9.
[2] Hebard, A., Rosseinsky, M., Haddon, R., Murphy, D., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P., and Kortan, A. R. 1991. “Superconductivity at 18 K in Potassium-doped C60.” Nature 350: 600-1.
[3] Sheka, E. 2011. “Nanophotonics of Fullerene. 2. Linear and Non-Linear Optics.” Nanosci. Nanotechnol. Lett. 3: 34-40.
[4] Ren, S., Wuttig, M., 2012. “Organic Exciton Multiferroics. Advanced Materials.” Advanced MaterialsMulticonfigurational Study of the Electronic Structure of Negatively Charged Fullerens 35 24: 724-7.
[5] Allemand, P. M., Khemani, K. C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Gruner, G., Thompson, J. D. 1991. “Organic Molecular Soft Ferromagnetism in a FULLERENE C60. ” Science 253: 301-2.
[6] Wilken, S., Scheunemann, D., Wilkens, V., Parisi, J., and Borchert, H. 2012. “Improvement of ITO-free Inverted Polymer-based Solar Cells by Using Colloidal Zinc
Oxide Nanocrystals as Electron-Selective Buffer Layer.” Org. Electron.13: 2386-94.
[7] Li, C. Z., Yip, H. L., and Jen, A. K. Y. 2012. “Functional Fullerenes for Organic Photovoltaics.” Journal of Materials Chemistry 22: 4161-77.
[8] Durand, P., Darling, G., Dubitsky, Y., Zaopo, A., and Rosseinsky, M., 2003. “The Mott-Hubbard Insulating State and Orbital Degeneracy in the Superconducting ି ܥଷ Fulleride Family.” Nat. Mater. 2: 605-10.
[9] Takabayashi, Y., Ganin, A. Y., Jeglic, P., Arcon, D., Takano, T., Iwasa, Y., Ohishi, Y., Takata, M., Takeshita, N., Prassides, K., and Rosseinsky, M. J. 2009. “The Disorder-free Non-BCS Superconductor Cs3C60 Emerges from an Antiferromagnetic Insulator Parent State.” Science 323: 1585-90.
[10] Rabenau, T., Simon, A., Kremer, R. K., and Sohmen, E. 1993. “The Energy Gaps of Fullerene C60 and C70 Determined from the Temperature Dependent Microwave Conductivity.” Phys. B. 90: 69-72.
[11] Benning, P. J., Martins, J. L., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E. 1991. “Electronic States of Kx C60: Insulating, Metallic, and Superconducting Character.” Science 252: 1417-21.
[12] Käämbre, T., Schnadt, J., Norlund, D., Glover, C. J., Rubensson, J. E., Rudolf, P., Mårtensson, N., Nordgren, J., and Bruhwiler, P. A. 2007. “Bulk Electronic Structure of K3C60 as Revealed by Soft X-rays.” Phys. Rev. B Solid State 75: 195432.
[13] Ganin, A. Y., Takabayashi, Y., Jeglic, P., Arcon, D., Potočnik, A., Baker, P. J., Ohisi, Y., McDonald, M. T., Tzirakis, M. D., McLennan, A., Darling, G. R., Takata, M., Rosseinsky, M. J., and Prassides, K. 2010. “Polymorphism Control of Superconductivity and Magnetism in Cs3C60 Close to the Mott Transition.” Nature 466: 221-5.
[14] Neaton, J. B., and Ashcroft, N. W. 1999. “Pairing in Dense Lithiumnature.” Nature 400 (6740): 141-4.
[15] Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., Fdez. Galván, I., Ferré, N., and et al. 2016. “Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations Across the Periodic Table.” J. Comput. Chem. 37: 506-41.
[16] Andersson, K., Malmqvist, P. Å, and Roos, B. O. 1992. “Second-Order Perturbation Theory with a Complete Active Space Self-consistent Field Reference Function.” J. Chem. Phys. 96: 1218-26.
[17] Pierloot, K., Dumez, B., Widmark, P. O., and Roos, B. O. 1995. “Density Matrix Averaged Atomic Narural Orbital (ANO) Basis Sets for Correlated Molecular Wave Functions. IV. Medium Size Basis Sets for the Atoms H-Kr.” Theor. Chim. Acta. 90: 87-114.
[18] Veryazov, V., Malmqvist, P. Å., and Roos, B. O. 2011. “How to Select Active Space for Multiconfigurational Quantum Chemistry?.” Int. J. Quantum Chem. 111 (111): 3329-38.
[19] Schollwoeck, U., 2011. “The Density-Matrix Renormalization Group in the Age of Matrix Product States.” Ann. Phys.326: 96-192.
[20] Wierzbowska, M., Lüders, M., and Tosatti, E. 2004. “Multiplet Structures of Charged Fullerenes.” J. Phys. B: At., Mol. Opt. Phys. 37: 2685-98.
[21] Yang, S., Pettiette, C., Conceicao, J., Cheshnovsky, O., and Smalley, R. 1987. “UPS of Buckminsterfullerene and Other Large Clusters of Carbon.” Chem. Phys. Lett. 139:233-8.
[22] Lezius, M., Scheier, P., and Märk, T. 1993. “Free Electron Attachment to C60 and C70.” Chem. Phys. Lett. 203: 232-6.
[23] Rosén, A., and Wästberg, B. 1989. “Calculations of the Ionization Thresholds and Electron Affinities of the Neutral, Positively and Negatively Charged C60—Follene‐60.” J. Chem. Phys. 90: 2525-6.
[24] Coulon, V., Martins, J., and Reuse, F. 1992. “Electronic Structure of Neutral and Charged C60 Clusters.” Phys. Rev. B. 45: 13671-5.
[25] Razafinjanahary, H., Rogemond, F., and Chermette, H. 1994. “Incidence of the Muffin‐tin Approximation on the Electronic Structure of Large Clusters Calculated by the MS–LSD Method: The Typical Case of C60.” Int. J. Quantum Chem. 51: 319-28.
[26] Fabrizio, M., and Tosatti, E. 1997. “Nonmagnetic Molecular Jahn-Teller Mott Insulators.” Phys. Rev. B. 55: 13465.
[27] Knupfer, M., and Fink, J. 1997. “Mott-Hubbard-like Behavior of the Energy Gap of A4C60 (A = Na, K, Rb, Cs) and Na10C60.” J. Phys. Rev. Lett. 79: 2714-7.
[28] Chibotaru, L., Ceulemans, A., and Cojocaru, S. 1999. “Electronic Structure of A4C60: Joint Effect of Electron Correlation and Vibronic Interactions.” Phys. Rev. B. 59: R12728.
[29] Kiefl, R. F., Duty, T., Schneider, J., MacFarlane, A., Chow, K., Elzey, J., Mendels, P., Morris, G. D., and et al. 1992. “Evidence for Endohedral Muonium in K xC60 and Consequences for Electronic Structure.” Phys. Rev. lett. 69: 2005-8.36 Multiconfigurational Study of the Electronic Structure of Negatively Charged Fullerens
[30] Kosaka, M., Tanigaki, K., Hirosawa, I., Shimakawa, Y., Kuroshima, S., Ebbesen, T., Mizuki, J., and Kubo, Y. 1993. “ESR Studies of K-doped C60.” Chem. Phys. lett. 203: 429-32.
[31] Stepniak, F., Benning, P., Poirier, D., and Weaver, J. 1993. “Electrical Transport in Na, K, Rb, and Cs Fullerides: Phase Formation, Microstructure, and Metallicity.” J. Phys. Rev. B. 48: 1899-906.
[32] Mitrano, M., Cantaluppi, A., Nicoletti, D., Kaiser, S., Perucchi, A., Lupi, S., Di Pietro, P., Pontiroli, D., and et al. 2015. “An Optically Stimulated Superconducting-like Phase in k3c60 far above Equilibrium tc.” Physics.