

Some Thoughts on the Teaching of the “Digital Trade” Professional Course in Vocational Undergraduate Education

NI Kun*, LIU Hongyan

Shenzhen Polytechnic University, Shenzhen, China

Upgrading higher vocational colleges to undergraduate-level vocational universities is an important measure for optimizing the vocational education system. The curriculum construction needs to simultaneously achieve the transformation from “starting from vocational colleges” to “deepening to the undergraduate level”. Based on the reform practices of institutions such as Shenzhen Polytechnic University, this paper proposes a dual-track reform path for the “theory-practice integration” textbook development and the “task-driven project-based teaching” model innovation of the “Digital Trade” course. At the textbook level, a module system of “basic theory—technical support—business practice—professional quality—international exchange” has been constructed, and a dynamically updated virtual simulation system and a real enterprise case library have been embedded. At the teaching level, a task chain design of “project guidance + group collaboration + result presentation” has been implemented, a linked class hour mode of “2 theories + 2 practices” has been adopted, and a “virtual-reality integration” resource ecosystem has been constructed relying on the national smart education platform and enterprise practice bases.

Keywords: digital trade, vocational undergraduate education, theory-practice integration, project-based teaching

Course Background and Transformation Needs

The cross-border e-commerce major of Shenzhen Polytechnic has moved from the original junior college education model to a new stage of undergraduate-level vocational education, which has put forward higher requirements for the curriculum design. Taking the “Fundamentals of Digital Trade” course as an example, during its implementation in the first two years, this course was mainly designed based on the teaching objectives of vocational education at the junior college level, and was aimed at providing professional enlightenment education for freshmen. The course is positioned as a professional basic course, with 48 class hours and 3 credits. Practical training accounts for approximately 50%, including case analysis and practical operation. It aims to help students establish an initial understanding of the digital trade field, master basic concepts and industry terms, and understand the development context and macro pattern of global and Chinese digital trade. However, after entering the undergraduate level, especially with the positioning of core professional courses for senior students, it is required that the course content must achieve a leap from “general introduction” to “specialized deepening”.

Acknowledgment: This research was funded by the Phase III Program (Grant No. 6025310002Q) of the Institute for Economic and Social Development at Shenzhen Polytechnic University.

*NI Kun (corresponding author), Ph.D., School of Foreign Languages and Business, Shenzhen Polytechnic University, Shenzhen, China.

LIU Hongyan, Ph.D., Professor, School of Vocational and Technical Education, Shenzhen Polytechnic University, Shenzhen, China.

As the “Fundamentals of Digital Trade” course at the junior college level will be upgraded to “Introduction to Digital Trade” at the undergraduate level, the course will no longer be confined to term explanations and phenomenon descriptions. Instead, it should integrate emerging technology modules such as big data analysis, artificial intelligence applications, and blockchain technology to strengthen the cultivation of students’ comprehensive abilities. The upgrading of courses should also be reflected in the renewal of teaching resources, such as introducing a virtual simulation training platform based on real enterprise cases and developing a dynamic case library focusing on the cutting-edge of digital trade. This will lay a solid foundation for the integration of “digital intelligence + trade and economy”, and enhance students’ integration ability and competence.

Thoughts on Curriculum Teaching Reform

Transformation of Teaching Concepts

With the in-depth advancement of vocational undergraduate education, the traditional course teaching model centered on knowledge imparting has been unable to meet the demands of cultivating high-quality technical and skilled talents (Liu, Ni, Deng, & Wang, 2025). Against this backdrop, the teaching philosophy of the “Introduction to Digital Trade” course must undergo a fundamental transformation—from the focus of “Fundamentals of Digital Trade” on the memorization and understanding of theoretical concepts to the systematic cultivation of students’ comprehensive abilities. This transformation is not only reflected in the selection of teaching content, but also runs through the entire process of teaching design and implementation. To achieve the leap from a knowledge-based approach to a competency-based one, the “Introduction to Digital Trade” course needs to drive three core transformations: Firstly, the teaching focus should shift from “what to teach” to “how to learn”, that is, the role of teachers should change from one-way knowledge producers to designers and guides of learning activities, emphasizing the stimulation of students’ awareness of independent exploration. Secondly, the evaluation criteria have shifted from “understanding” to “being able to do”, emphasizing the externalization of learning outcomes into displayable and assessable actual outputs, such as market analysis reports, operation plans or simulated project roadshows. Finally, the learning approach shifts from “individual learning” to “team collaboration + outcome output”. Through group cooperation to complete complex tasks, students’ professional qualities such as communication and coordination, division of labor and collaboration, and sense of responsibility are cultivated. These three transformations collectively form the fundamental logic of the new teaching paradigm, ensuring that students master the core business processes and decision-making methods of digital trade in real or simulated working scenarios, thereby truly achieving “learning by doing and creating while learning”.

Upgrading of Teaching Concepts

Goal-oriented instructional design requires that each teaching unit clearly correspond to specific vocational ability goals. Such goal setting follows the SMART principle, featuring clarity, measurability and practical orientation. It helps students clearly understand their learning paths and expected outcomes, and also provides a basis for subsequent process evaluation (Chen, 2023).

Project traction is an important bridge connecting theory and practice. The entire course can be centered around six typical projects, such as “Full-Process Simulation of Cross-border Store Opening”, “Overseas Social Media Marketing Planning”, “AI-assisted Content Generation and Optimization”, etc. Each project is derived from real business scenarios of enterprises. Taking SHEIN’s successful model as an example, its product selection mechanism that responds quickly to the market relies on the real-time analysis of a vast amount of

consumer data. The course can guide students to reproduce this logic through similar projects, enhancing their depth of understanding of data-driven operations. The project design emphasizes integrity and challenge, encouraging students to undergo full-cycle training from problem identification, solution formulation to execution feedback.

To enhance classroom vitality and students' engagement, various interactive forms such as group discussions, role-playing, debate competitions, and outcome roadshows should be widely adopted. For instance, when discussing the topic of "whether platform algorithms exacerbate unfair competition among small and medium-sized sellers", organizing students to engage in group debates on both the affirmative and negative sides can not only exercise critical thinking but also deepen their understanding of the platform's governance mechanism. Introduce mechanisms such as online connection and comment by enterprise experts and mutual evaluation and scoring among students to further enrich the dimensions of interaction.

The reform of evaluation methods is a key support for the upgrading of teaching concepts. It is suggested that the proportion of process evaluation be raised to no less than 60%, covering multiple dimensions such as task completion quality, team contribution, interim reports, and reflection logs. The final assessment mainly focuses on the presentation of project achievements, supplemented by a defense session, to comprehensively evaluate the students' overall performance. A multi-dimensional evaluation system not only can more objectively reflect students' true levels, but also effectively avoid the limitation of "one exam determining the score".

Reconstruction of Teaching Mode

Taking the "Product Selection Decision Based on Data Analysis" project as an example, the teaching can be divided into six stages: The first stage is project introduction, which triggers thinking by presenting successful cases of enterprises such as Anker and SHEIN; In the second stage, lay the groundwork for knowledge and briefly teach the basic principles of tools such as Google Trends and Jungle Scout (within 20 minutes); In the third stage, a task book will be released, requiring students to select a specific category (such as a smart pet feeder) and conduct a market feasibility study. In the fourth stage, students enter group exploration, where they use designated tools to collect data and create analysis charts. The fifth stage is the presentation of achievements. Each group will give an 8-minute roadshow and answer questions from teachers and students. In the sixth stage, teachers summarize common problems and distill the core logic of "data-driven product selection". This model embodies a closed-loop structure of "guidance—learning—practice—feedback", significantly enhancing students' practical abilities and problem-solving skills.

To ensure the continuity and effectiveness of project-based teaching, it is recommended to adopt a class hour model of "2 theoretical sessions + 2 practical training sessions" in a row, and arrange a total of 4 class hours of centralized teaching once a week. Such an arrangement is conducive to students immediately engaging in practical training after knowledge input, reducing information forgetting and enhancing learning efficiency. Two key nodes, the mid-term inspection and the final defense, can be set up during the semester to dynamically monitor the project progress and provide timely guidance and adjustments (Xu, Song, & Du, 2022).

Teaching Resources and Platform Support

At present, the school's existing practical training platform can simulate the operating environment of mainstream platforms such as Alibaba International Station and AliExpress, supporting students to complete the entire process of account registration, product listing, order processing, etc., which greatly compensates for the high risks and high costs of real platforms. However, a variety of free or educational-licensed data analysis tools

should be integrated for practical teaching, such as Google Trends for trend judgment, Keyword Tool Dominator for assisting keyword layout, and SimilarWeb for analyzing the traffic structure of competing products. Jungle Scout (Free version) Evaluate category popularity. The use of these tools not only enhances the authenticity of teaching but also enables students to master common industry skills.

Actively connect with physical bases such as the Qianhai Cross-border E-commerce Industrial Park in Shenzhen, the South China City E-commerce Park, and the Shopee Official Incubation Center, and establish stable off-campus practice channels. Through organizing visits, short-term internships, and enterprise-proposed competitions and other forms, students are exposed to front-line operation scenarios, obtain real case materials, and enhance their professional identity. Suggest to build a unified “digital trade cloud disk teaching resources”, continue to accumulate all outstanding student work, enterprise desensitization case, digital assets, such as micro lesson video, task template. This cloud disk can be classified and managed by modules, supporting joint construction and sharing by teachers and students, forming a long-term resource accumulation mechanism, and providing strong support for course iteration.

Conclusion

Based on the exploration of professional development and teaching practice at Shenzhen Polytechnic University, This article systematically proposes the curriculum reform path for the “Digital Trade” course to transform from “junior college enlightenment” to “undergraduate deepening”. Through the dual-track model of “integrated theory and practice” textbook development and “task-driven project-based teaching”, it can effectively achieve the transformation of teaching content from knowledge imparting to ability cultivation.

According to the requirements of industrial development and the training goals for vocational undergraduate talents, the teaching reform of the “Introduction to Digital Trade” course at the undergraduate level should further deepen the integration of industry and education, strengthen strategic cooperation with leading enterprises in the industry, dynamically update the course content, continuously optimize the teaching mode, and constantly explore innovative teaching paths of “digital intelligence + Trade and economy”.

By continuously improving the closed-loop mechanism of “teaching—practice—feedback”, the vocational undergraduate course “Introduction to Digital Trade” will better serve the national digital economic development strategy and provide strong support for cultivating compound talents in digital trade with an international perspective, innovative spirit and practical ability. This is not only an innovation in teaching models, but also an elevation of the concept of vocational education. It holds significant demonstration significance and practical value for promoting the modernization of vocational education and serving the high-quality development of the national digital economy.

References

Chen, M. (2023). Research on the construction of a professional competency training target system for industrial robots based on the SMART principle and combined with the 1+X certificate system. *Vocational Education, 1*.

Liu, H. Y., Ni, K., Deng, L. Z., & Wang, Z. (2025). Analysis of the basic educational positioning system of vocational undergraduate universities. *Journal of Shenzhen Polytechnic University, 5*.

Xu, Q. N., Song, K. Y., & Du, X. W. (2022). Construction and practice of a collaborative teaching model for practical training courses from multiple theoretical perspectives. *Vocational Education Forum, 6*.