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Abstract: The AB (Aharonov-Bohm) effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role 

of the electromagnetic vector potential A  in determining the phase of a charged particle’s wave function, even in regions where 

the magnetic field B  is zero. This effect demonstrates that quantum particles are influenced not only by the fields directly 

present but also by the potentials associated with those fields. In the AB effect, an electron beam is split into two paths, with 

one path encircling a solenoid and the other bypassing it. Despite the absence of a magnetic field in the regions traversed by the 

beams, the vector potential A  associated with the magnetic flux  through the solenoid induces a phase shift in the electron’s 

wave function. This phase shift, quantified by q c   , manifests as a change in the interference pattern observed in 

the detection screen. The phenomenon underscores the principle of gauge invariance in QED (quantum electrodynamics), where 

physical observables remain invariant under local gauge transformations of the vector and scalar potentials. This reinforces the 

notion that the vector potential A  has a profound impact on quantum systems, beyond its classical role. This article outlines 

the AB effect, including its theoretical framework, experimental observations, and implications. The focus on the role of the 

vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon. 
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1. Introduction 

The AB (Aharonov-Bohm) effect is a fascinating quantum 

mechanical phenomenon that reveals the deep interplay 

between quantum particles and electromagnetic 

potentials. First predicted by Yakir Aharonov and 

David Bohm in 1959, this effect demonstrates that even 

in regions where the magnetic field is zero, the vector 

potential can still influence the phase of a charged 

particle’s wave function, leading to observable 

consequences. This effect underscores the significance 

of electromagnetic potentials in quantum theory, 

providing profound insights into the nature of quantum 

mechanics and gauge invariance. 

Standard quantum physics states that electromagnetic 

fields in areas where a charged particle is strictly 

forbidden can occasionally affect the particle’s motion 
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[1, 2]. We now refer to these phenomena as the AB effect 

is named for the groundbreaking 1959 publication 

“Significance of Electromagnetic Potentials in the 

Quantum Theory”, written by Y. Aharonov and D. 

Bohm [1]. Since then, experts have debated [3-8] what 

the AB effect tells us about the importance of 

electromagnetic potentials, assuming that, standard 

quantum physics accurately describes the natural world.  

The opportunity to test quantum mechanics in a new 

regime, gain new insights into the theory’s operation, 

and some physicists’ disbelief in the possibility of 

observable effects of fields confined to excluded 

regions have all contributed to the discussion’s 

significant advancement. Over three hundred journal 

publications about the AB effect have been published 

in the last thirty years. 
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It has been suggested that calculations ostensibly 

based on ordinary quantum mechanics demonstrate 

that the theory does not include the AB effect and that 

Aharonov and Bohm are merely mistaken [9-12].  

The Ehrenfest theorem, which states that a particle or 

wave packet cannot be deflected in the absence of 

forces, has been used to demonstrate that something is 

amiss. 

There have been proposed modified versions of 

quantum mechanics that share the tested predictions of 

standard theory but do not display the AB effect [13].  

According to interpretations based on classical 

calculations, a particle moving in a field-free region is 

not truly described by the AB effect; rather, the particle 

experiences an induced classical force because of its 

interaction with the source of the fields in the excluded 

region [14, 15]. Theoretical examinations that validate 

the conclusions and occasionally the interpretations of 

Aharonov and Bohm have disproved all these claims 

[16]. 

The experimental quantization of the fluxoid in 

superconducting rings and in Josephson junctions has 

been interpreted as an experimental confirmation of AB 

effect [17]. Interference experiments on electron beams 

have been carried out to provide more direct 

confirmation, with increasing precision and especially 

with increasing control of stray fields that might 

obscure the implications of the experiments [18-20]. 

The initial concept has also been expanded upon. 

Theoretically, the AB effect has been explained by 

substituting a non-Abelian gauge field for the 

electromagnetic field [7, 8, 21, 22], however there is 

little likelihood such an experiment could be carried out. 

It has been proposed that particles with odd spins and 

presumably unusual statistics, made of electrons bound 

to magnetic flux lines, might exist in theory [23]. The 

AB effect is being developed practically to examine the 

quantum characteristics of mesoscopic normal 

conductors [24, 25]. Additionally, the charge of the 

neutron has been measured using the AB effect in a 

unique experiment [26], and very recently, 

investigations have shown the structure of flux lines in 

superconductors [27-28]. 

A significant number of theoretical disputes have 

arisen between authors who have said or suggested that 

they began with similar premises. Others arise when the 

particle’s domain is a multiply connected region, which 

is always the case in the AB effect, and are caused by 

the incompleteness of the conventional assumptions. 

Some authors who rejected the theory’s AB effect have 

questioned the experimenters’ purported reduction of 

inaccuracy from stray fields, casting doubt on the 

experimental results that show positive results. 

The pivotal experiment has now been completed [20]. 

With remarkable precision and control over the stray 

field issue, it validates Aharonov and Bohm’s 

predictions. 

This essay is meant to function as an introduction 

and critique of the one that follows, written by A. 

Tonomura, in which he details his own experiments as 

well as previous attempts at experimentation. The 

majority of what I share here is not novel. My goals are 

twofold: first, I will describe the experiment and the 

theoretical concepts it tests; second, we will talk about 

the basic problems in physics that the experiment and 

the theory address. 

Nearly all the debate is predicated on nonrelativistic 

quantum physics, either on the algebraic ramifications 

of the commutation relations or on the Schrodinger 

equation. Only a handful of the theory’s broad features 

are necessary for much of it. We think this simple 

approach—which highlights how closely the AB effect 

is tied to both the most fundamental and broad aspects 

of quantum theory—best clarifies all the key 

difficulties. 

2. What Is the AB Effect? 

As we stated in abstract and introductory section of 

this article above, the following is how the idea was 

presented in Ref. [2].  

Think about the interference experiment shown in 

Fig. 1. In a two-arm interferometer, electrons arrive 
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from the left and the beam is split coherently. When the 

two beams are reunited at the right, any change in the 

relative phase of the beams in the two arms can, in 

theory, be seen as a shift in the interference pattern. 
 

 
(a) 

 

 
(b) 
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(c) 

Note that: The axis of the solenoid is perpendicular to the page; the wave function is a split plane wave. Also, Y1e = Y2e = 0 except, 

when the wave packet is shielded from the electric field. 
 

 
(d) 

Fig. 1  (a) AB effect; (b) Illustration of interference experiment for AB effect with solenoid inducing magnetic field B; (c) 

Two-slit diffraction experiment of the AB effect; (d) Electric AB effect. V1e = Ve2 = 0 except when the wave packet is shielded 

from the electric the electric field. 
 

A stationary magnetic field B  is introduced in the 

space between the two beams in the magnetic variant 

of the AB effect, as shown in Fig. 1a. There are certain 

barriers that firmly keep the electrons out of that area 

for all time. The return magnetic flux designed to stay 

out of the areas where electrons are allowed gives the 

time-independent wave function ( )x  and the 

Hamiltonian   [29]: 

   
2

01 2 ( ) ( )em i e c A x eV x         (1) 
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 0( ) ( )exp ( )x x iS x    (2) 

where ( )eA x  is the vector potential due to the 

excluded magnetic field and ( )S x  is the line integral 

as [29]: 

 ( ) ( ') '
x

eS x e c A x dx     (3) 

Note that: deriving these equations the Gaussian units 

have been used and e represents the absolute value of 

the electron’s charge. 

And the path of integration is taken along the arm of 

the interferometer containing the point x , 0 ( )x  is 

the wave function in the absence of the excluded 

magnetic field represented by ( )eA x , and  

represents possible electrostatic potentials to steer the 

beam which do not depend upon the excluded magnetic 

field. 

If the magnetic flux   through the coil is 

nonvanishing, the vector potential ( )eA x  cannot 

vanish everywhere in the support of 0 ( )x , because 

 on a closed path drawn around the coil 

through the two arms of the interferometer is equal to 

 . 

In the interference region, the phase shift between 

the two beams is: 

   2 1S S e c       (4) 

where 2S  and 1S  are the action integrals in above 

equation with that dependency of integral sign 

calculated along the upper and lower arms of the 

interferometer. 

The phase shift   between the beams in the two 

arms of the interferometer is gauge invariant, as it must 

be, depending only upon the magnetic flux through the 

excluded region. The interference pattern is therefore a 

periodic function of that magnetic flux, with period 

equal to London’s unit [29], 

0 2 c e   (5) 

In the electric version of AB effect, the split beam 

progresses through ideal conducting pipes that shield 

the electrons from electric fields as shown in Fig. 1b. 

In this case, the incident beam must consist of a bunch 

whose length is much smaller than the length of the 

conducting pipes. Voltages Ve1(t) and Ve2(t) are 

impressed on the two pipes, but only during a limited 

time interval while the split electron beam is deep 

inside one pipe or the other, so that an electron never 

experiences any local electric field. Now the 

Hamiltonian is given by Peshkin and Tonomura [29]: 

0 ( , )eH H eV x t   (6) 

where  2 2

0 2H m V   and the wave function is: 

 0

( , )
( , ) ( , )exp eiS x t
x t x t 


   (7) 

where 0  represents the split wave packet in the 

absence of external potential ( , )eV x t  and 

0
( , ) ( , ') '

t

e eS x t e V x t dt    (8) 

When the two packets reach the point x in the 

interference region at some time t after ( , )eV x t  has 

returned to zero everywhere, their relative phase is 

shifted by the amount: 

 2 1( , ) ( , )e eS x t S x t    (9) 

and that shows up as an observable change in the 

interference pattern that depends upon the potentials 

impressed on the two pipes at earlier times t' when the 

electrons were inside the pipes and experienced no 

local electric field. 

Eq. (7) gives a solution of the Schrödinger equation: 

   0 ( , )ei t H eV x t      (10) 

although ( , )V x t  vanishes wherever 0 ( , )x t  does 

not vanish. That is mathematically the essence of the 

electric AB effect. To achieve that and still get a phase 

shift between the two beams, we need a region between 

them where the wave function 0 ( , )x t  vanishes and 

the electric field, - , does not 

vanish. The electron must therefore be confined to a 

multiply connected region surrounding the excluded 

0 ( )V x

( )
x

eA x dx

( , )V x t ( , )V x t
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electric field, but now that is a space-time region and 

the periodicity in the external field involves a space-

time integral. 

3. Classical Physics Context 

There is no AB effect in classical physics. AB effect 

enters quantum mechanics through the appearance of 

the electromagnetic potentials ( , )eV x t  and ( , )eA x t  

in the Hamiltonian and consequently in the Schrödinger 

equation. 

Potentials occur in the same way as they do in 

quantum theory when classical theory is presented in 

the Lagrangian or Hamiltonian formulation. However, 

we are aware that those classical physics formulas are 

analogous to Newton’s equations, meaning that the 

local electric and magnetic fields acting on a charged 

particle control its motion entirely. Newton’s second 

law and the Lorentz force equation, then can be 

represented as: 

   2 2 (v / )m d r dt e E c B      (11) 

and nothing more is needed. As the local conservation 

of momentum and energy between the particles and 

fields depends on it, eliminating this aspect of the 

classical theory in the case of a multiply connected 

region is not a promising endeavor. 

It follows that the peculiarity of quantum theory that 

the AB effect depends on the flow or the action in units 

proportional to Planck’s constant  should come as 

no surprise. 

Attempts have nevertheless been made to obtain AB 

effect from classical or semiclassical theory by invoking a 

reaction on the beam particle which results from its 

action on the source of the excluded external field [14, 

15]. That too is an unpromising way to try to explain an 

interference pattern or a scattering cross section, because 

for small e the amplitudes would be proportional to e2 

and cross sections to e4, while quantum mechanics 

finds them proportional to e and e2 respectively. 

Moreover, the AB effect primarily arises from 

quantum mechanics and does not have a classical 

analog in the same way that classical electromagnetism 

deals with fields and forces. However, understanding 

its classical context can help illustrate why this effect is 

uniquely quantum and not classical. 

3.1 Classical Physics Context 

3.1.1 Classical Electromagnetism 

In classical electromagnetism, the behavior of 

charged particles is explained by Maxwell’s equations, 

which describe how electric and magnetic fields 

interact with charges. Classical theory asserts that 

particles are influenced by the electric and magnetic 

fields in their immediate vicinity. If a region is devoid 

of a magnetic field, as in the region around a solenoid 

in the AB setup, classical electromagnetism predicts that 

no influence should be felt by particles moving through 

that region. 

3.1.2 Magnetic Field and Vector Potential 

In classical theory, the vector potential A  is a 

mathematical construct used to simplify calculations, 

but physical effects are attributed to the magnetic field 

B , which is derived from A  through B A . In 

the AB effect, the magnetic field is zero in the region 

where particles travel, yet the vector potential A  still 

influences the particles’ quantum phase. This behavior 

is not predicted by classical theory alone. 

3.2 Classical Quantum Mechanical Perspective 

3.2.1 Phase Shift and Interference 

The AB effect demonstrates that the quantum phase 

of a particle’s wave function is affected by the vector 

potential A , even when the magnetic field B  is zero 

in the region where the particle travels. This phase shift, 

which influences interference patterns, is a purely 

quantum mechanical phenomenon and does not have a 

direct classical counterpart. 

3.2.2 Gauge Invariance 

The effect highlights the principle of gauge 

invariance in quantum mechanics, where physical 

observables remain unchanged under local gauge 

transformations. Classical electromagnetism does not 
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account for such gauge invariance in the same way 

quantum mechanics does, as it deals with fields and 

forces rather than quantum phases. 

3.3 Classical Quantum Mechanical Perspective 

3.3.1 Historical Context 

The classical theory provided the groundwork for 

understanding electromagnetism, but quantum mechanics 

extended these concepts to describe phenomena that 

classical theory could not. The AB effect emerged from 

the development of QED (quantum electrodynamics), a 

quantum field theory that incorporates both the 

classical electromagnetic fields and quantum principles. 

3.3.2 Conceptual Insights 

While the AB effect itself is purely quantum, it 

underscores the limitations of classical theory in fully 

describing the behavior of particles in electromagnetic 

potentials. It highlights the need for a quantum 

mechanical framework to understand and predict the 

behavior of particles influenced by potentials in ways 

that classical electromagnetism does not address. 

In summary, while the AB effect cannot be fully 

explained by classical physics alone, understanding the 

classical context helps clarify why this effect is a 

distinct and critical phenomenon in quantum mechanics. 

It illustrates the limitations of classical theories in 

accounting for quantum effects and the necessity of 

quantum mechanics for a complete description of 

particle behavior in electromagnetic fields. 

4 Interferometry Coordinates and 

Interoperability 

Interferometry involves measuring the interference 

patterns created by the superposition of two or more 

wavefronts. In the context of quantum mechanics and 

the AB effect, interferometry is used to detect the phase 

shifts caused by the vector potential. 

4.1 Interferometry Coordinates 

4.1.1 Spatial Coordinates 

In a typical interferometric setup, spatial coordinates 

define the positions of the beam splitters, mirrors, and 

detectors. The arrangement of these components 

determines the paths of the beams and their interference. 

4.1.2 Phase Coordinates 

Coordinates in phase space describe the phase 

difference introduced by the vector potential. In the AB 

effect, this phase shift affects the interference pattern 

observed. 

4.2 Interoperability 

4.2.1 Integration with Quantum Mechanics 

The AB effect illustrates how quantum mechanical 

systems can be influenced by potentials that are not 

directly observable through classical fields. It shows 

the need for coherence between quantum theoretical 

predictions and experimental setups. 

4.2.2 Compatibility with Other Effects 

Interferometry setups can be designed to test various 

quantum effects, including the AB effect. Ensuring 

interoperability involves aligning experimental 

configurations with theoretical models to accurately 

measure and interpret phase shifts and other quantum 

phenomena. 

In summary, the AB effect reveals the impact of 

vector potentials on quantum phases, and 

interferometry is a key technique for observing these 

effects. Understanding the coordinates and 

interoperability in these contexts helps in designing 

experiments and interpreting results in quantum 

mechanics. 

5. About the AB Effect and LSW (Longitudinal 

Scalar Wave) 

The interaction of longitudinal scalar waves with the 

AB effect is an intriguing topic, but it is important to 

clarify how these concepts relate within the framework 

of QED and classical electromagnetism. 

5.1 LSW 

5.1.1 Definition and Context 

In classical electromagnetism, longitudinal waves 
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are those where the oscillations of the field are parallel 

to the direction of propagation. Scalar waves can be 

longitudinal if we consider scalar fields that vary in 

space and time, such as sound waves in a medium. 

However, in the context of electromagnetism and 

quantum field theory, scalar waves are generally not 

longitudinal but are instead described as oscillations in 

a scalar field. 

In quantum field theory, scalar fields describe 

particles with zero spin, like the Higgs boson. These 

fields are usually treated as having a scalar nature and 

are not typically associated with longitudinal wave 

solutions in the same way as electromagnetic fields. 

5.1.2 Longitudinal Components in Electromagnetism 

In electromagnetism, electromagnetic waves are 

typically transverse, meaning the electric and magnetic 

fields oscillate perpendicular to the direction of 

propagation. Longitudinal components in electromagnetic 

theory are usually associated with static fields or 

specific configurations, such as in electrostatic fields or 

plasmas, rather than free-space electromagnetic waves. 

5.2 Interaction with the AB Effect 

5.2.1 AB Effect Overview 

The AB effect demonstrates how the vector potential 

A  affects the quantum phase of a particle, even in 

regions where the magnetic field B  is zero. This 

effect is primarily concerned with the vector potential’s 

influence on quantum interference patterns. 

5.2.2 Scalar Fields and the AB Effect 

Scalar fields, including longitudinal scalar waves, do 

not directly interact with the vector potential in the 

same manner as the magnetic field does. The AB effect 

specifically highlights the role of the vector potential in 

quantum phase shifts. Scalar fields typically affect 

quantum systems differently and are not directly 

responsible for the phase shifts observed in the AB 

effect. 

However, if a scalar field were to interact with or 

modify the electromagnetic potential in a way that 

affects the vector potential or the charge distribution, it 

could indirectly influence the AB effect. This interaction 

would be more complex and would involve the scalar 

field influencing the effective electromagnetic 

environment rather than directly causing the AB effect. 

6. Conclusions 

The AB effect stands as a quintessential demonstration 

of quantum mechanics, revealing that the vector 

potential A , rather than the magnetic field B , 

directly influences the quantum phase of particles. This 

effect, observed through changes in interference 

patterns of an electron beam encircling a solenoid, 

underscores the unique principles of quantum 

mechanics, including gauge invariance and the role of 

potentials in quantum phase shifts. 

Classical electromagnetism, grounded in Maxwell’s 

equations, primarily focuses on the direct influence of 

electric and magnetic fields on charged particles, 

without accounting for the quantum phase shifts 

introduced by vector potentials. The AB effect 

highlights the limitations of classical theories in 

describing phenomena that emerge at the quantum level, 

where potentials have physical significance beyond 

their classical counterparts. 

Interferometry plays a crucial role in experimentally 

observing the AB effect, providing insights into the 

quantum behavior of particles and reinforcing the 

principles of QED. The integration of quantum and 

classical concepts demonstrates the necessity of 

quantum mechanics for understanding and predicting 

the behavior of particles influenced by electromagnetic 

potentials, marking a significant departure from 

classical interpretations of field theory [30-34]. 

References 

[1] Aharonov, Y., and Bohm, D. 1959. “Significance of 

Electromagnetic Potentials in the Quantum Theory.” Phys. 

Rev. 115 (3): 485. 

[2] Wu, T. T., and Yang, C. N. 1975. “Concept of 

Nonintegrable Phase Factors and Global Formulation of 

Gauge Fields.” Phys. Rev. D 12 (12): 3845-57. 

[3] Bocchieri, P., and Loinger, A. 2008. “Nonexistence of the 

Aharonov-Bohm Effect.” Nuovo Cimento 47: 475-82.  



The Aharonov-Bohm Effect: An Exploration of Quantum Interference and Electromagnetic Potentials 

  

87 

[4] Ehrenberg, W., and Siday, R. W. 1949. “The Refractive 

Index in Electron Optics and the Principles of Dynamics.” 

Proceedings of the Physical Society. Section B 62 (1): 8. 

[5] Lenz, F. 1962. Phys. BI. 18 (1962): 305; see also Lenz, F. 

1961. Naturwiss. 48 (1961) 82. 

[6] Kobe, D. H. 1979. “Aharonov-Bohm Effect Revisited.” 

Ann. Phys. 123 (2): 381-410. 

[7] Marton, L. 1953. “Electron Interferometry.” Science 118: 

470-4. 

[8] Werner, F. G., and Brill, D. R. 1960. “Significance of 

Electromagnetic Potentials in the Quantum Theory in the 

Interpretation of Electron Interferometer Fringe 

Observations.” Phys. Rev. Lett. 4 (7): 344. 

[9] Chambers, R. G. 1960. “Shift of an Electron Interference 

Pattern by Enclosed Magnetic Flux.” Phys. Rev. Lett. 5: 3-5. 

[10] Fowler, H. A., Marton, L., Simpson, J. A., and Suddeth, J. 

A. 1961. “Electron Interferometer Studies of Iron 

Whiskers.” Appl. Phys. 32 (6): 1153-5. 

[11] Mollenstedt, G., and Bayh, W. 1962. “Kontinuierliche 

Phasenschiebung von Elektronenwellen im kraftfeldfreien 

Raum durch das magnetische Vektorpotential eines 

Solenoids.” Phys. BI. 18: 299-305. 

[12] Boersch, H., Hamisch, H., and Grohmann, K. 1962. 

“Experimenteller Nachweis der Phasenverschiebung von 

Elektronenwellen durch das magnetische Vektorpotential. 

II.” Z. Phys. 169: 263-72. (in German) 

[13] Jaklevic, R. C., Lambe, J., Mercereau, J. E., and Silver, A. 

H. 1965. “Macroscopic Quantum Interference in 

Superconductors.” Phys. Rev. A 140 (5A): 1628. 

[14] Matteucci, G., and Pozzi, G. 1978. “Two Further 

Experiments on Electron Interference.” Am. J. Phys. 46: 

619-23. 

[15] Olariu, S., and Popescu, I. I. 1985. “The Quantum Effects 

of Electromagnetic Fluxes.” Rev. Mod. Phys. 57 (2): 339. 

[16] Mollenstedt, G., and Docker, H. 1956. “Beobachtungen 

und Messungen an Biprisma-Interferenzen mit 

Elektronenwellen.” Z. Phys. 145: 377-97. (in German) 

[17] Bayh, W. 1962. “Messung der kontinuierlichen 

Phasenschiebung von ElektronenweUen im kraftfeldfreien 

Raum dutch das magnetische Vektorpotential einer 

Wolfram-Wendel.” Z. Phys. 169: 492. (in German) 

[18] Mollenstedt, G., and Bayh, W. 1962. “Messung der 

kontinuierlichen Phasenschiebung von Elektronenwellen 

im kraftfeldfreien Raum durch das magnetische 

vektorpotential einer Luftspule.” Naturwiss. 49: 81-2. (in 

German) 

[19] Aharonov, Y., and Bohm, D. 1961. “Further 

Considerations on Electromagnetic Potentials in the 

Quantum Theory.” Phys. Rev. 123 (4): 1511. 

[20] Krimmel, E., Mollenstedt, G., and Rothemund, W. 1964. 

“Measurement of Contact Potential Differences by 

Electron Interferometry.” Appl. Physics Letters 5 (209). 

[21] Furray, W. H., and Ramsey, N. F. 1963. Z. Angew. Phys. 

16; Furray, W. H., and Ramsey, N. F. 1960. “Significance 

of Potentials in Quantum Theory.” Phys. Rev. 118 (3): 

623-6. 

[22] Wegener, H. 1960. Z. Phys. 159: 243. 

[23] Mitler, H. E. 1961. “Electromagnetic Potentials in 

Quantum Mechanics.” Phys. Rev. 124 (3): 940-4. 

[24] Feynman, R. P., Leighton, R. B., and Sands, M. 1964. The 

Feynman Lectures in Physics (Vol. 2). Reading, MA: 

Addison-Wesley, p. 15. 

[25] Peshkin, M., Talmi, I., and Tassie, L. J. 1961. “The 

Quantum Mechanical Effects of Magnetic Fields Confined 

to Inaccessible Regions.” Ann. Phys. 12: 426-35. 

[26] Tassie, L. J., and Peshkin, M. 1961. “Symmetry Theory of 

the Aharonov-Bohm Effect: Quantum Mechanics in a 

Multiply Connected Region.” Ann. Phys. 16 (2): 177-84. 

[27] Noerdlinger, P. D. 1962. “Elimination of the 

Electromagnetic Potentials.” Nuovo Cimento 23: 158-67. 

[28] DeWitt, B. S. 1962. “Quantum Theory without 

Electromagnetic Potentials.” Phys. Rev. 125: 2189. 

[29] Peshkin, M., and Tonomura, A. 1998. Lecture Notes in 

Physics: The Aharonov-Bohm Effect. Wien: Springer-

Verlag. 

[30] Aharonov, Y., and Bohm, D. 1959. “Significance of 

Electromagnetic Potentials in the Quantum Theory.” 

Physical Review 115 (3): 485-91. 

[31] Chambers, R. G. 1960. “Shift of an Electron Interference 

Pattern by Enclosed Magnetic Flux.” Physical Review 

Letters 5 (3): 3-5. 

[32] Tonomura, S., Endo, J., Matsuda, T., and Kawasaki, T. W. 

1986. “Direct Observation of the Aharonov-Bohm Effect.” 

Physical Review Letters 56 (8): 792-5. 

[33] Aharonov, Y., and Casher, A. 1984. “Topological 

Quantum Effects for Neutral Particles.” Physical Review 

Letters 53 (7): 319-21. 

[34] Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den 

Nijs, M. 1982. “Quantized Hall Conductance as a 

Topological Distinction between Integer and Fractional 

Quantum Hall Effects.” Physical Review Letters 49 (6): 

405-8. 

 


