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As mentioned by National Geographic (2017), 70% of world’s population is expected to live in large apartment 

buildings by 2050. Today, buildings in cities generate 30% of world’s greenhouse gas emission or GHG (National 

Geographic, 2017). Major urban centers are committed to reducing greenhouse gases by 80% by 2050 (IEA, 2021). 

However, achieving such goals in rental properties is not easy. Landlords are hesitant to use high-efficiency 

technologies because, typically, tenants pay the utilities bill. However, that situation is rapidly changing. For 

example, New York City like other US cities, is considering a carbon cap on all large buildings (Local Law 97, 

2019). That means landlords will pay a carbon penalty if the building’s carbon footprint exceeds certain threshold 

no matter who uses that carbon. The Pacific Northwest National Laboratory (PNNL) has received funds from DOE 

(US Department of Energy) with the collaboration of a commercial partner to address emerging energy efficiency 

market opportunity in multi-family or rental housing as discussed above. It has partnered with a large national real 

estate owner in order to test a novel energy optimization method at a rental property in Tempe, Arizona. By using a 

seamless-integrated method of acquiring building’s operating data, the optimization approach essentially resets 

setpoints of different energy consuming equipment such as chillers, boilers, pumps, and fans. Data-driven 

optimization approach is pragmatic and easily transferrable to other buildings. The authors shall share the problem 

background, technical approach, and preliminary results. 

Keywords: HVAC, optimization, IoT, digitalization, multi-family housing, commercial buildings 

Introduction  

With the rapid home price growth over the past years, more homebuyers are starting to consider the 

apartment rental market. This trend is highlighted by the National Multi-family Housing Council (NMHC) data, 

which shows a 35% increase in occupied housing stocks between 2006 and 2016 (NMHC, 2022). According to 

their report, apartments make up a substantial share of the housing stock, with that share being much higher in 

metropolitan areas. In fact, many of these large cities are increasing their efforts in reducing carbon or 

greenhouse gas emissions by 80% before 2050 (IEA, 2021). The NMHC provides an elaborated report where 
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they estimate that there are about 17.5 million apartments with a central HVAC system in the U.S. alone. This 

paper describes a linear piecewise optimization approach for central HVAC systems that serves heating and 

cooling systems in high-rise multi-family housing or apartment buildings that are found in cities and urban 

centers. 

The objective of this research project is to develop, prototype, and demonstrate low-cost optimization 

solutions that can lower the carbon footprint of the multi-family residences by simply optimizing the central 

HVAC System utilizing VOLTTRON (VOLTTRON, 2021) integration platform. Our current approach serves 

as an example to advance energy-saving technologies that are typically ignored because tenants typically pay 

for heating, cooling, and other utilities (NMHC, 2022). However, the market is rapidly changing due to a focus 

on avoiding carbon penalties and the evolving consciousness for decarbonization and sustainability. 

The innovation of this approach resides in its pragmatic low-cost solution using real-time data, 

VOLTTRON as an integrated platform and IoT (internet of things) solution. Moreover, this paper describes the 

simplicity of the approach based on regression optimization methodologies that can be implemented on a cloud 

platform. 

The implementation of this project can help the multi-family market to achieve decarbonization goals and 

avoid the carbon penalty. For instance, our commercialization analysis revealed that this proposed solution can 

roughly help New York City save about $870 million in energy cost and 5 million tons of carbon annually (EIA, 

2022). Through data simulation, this linear piecewise regression approach was able to realize an average energy 

saving of 39% on the chilled water side and 38% on the cooling tower-side. 

Nomenclature 

𝛥𝑇𝑐ℎ𝑤 = chilled water temperature difference [℉] 

𝛥𝑇𝑐𝑡𝑤 = condenser water temperature difference [℉] 

𝐶𝑂𝑃 = coefficient of performance 

𝑁𝑒𝑡 𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 = heat removed from space [kWT] 

𝑃𝑡𝑜𝑡𝑎𝑙 = total power input [kW] 

𝑃𝑐ℎ,𝑑𝑒𝑠 = chiller power design power [kW] 

𝑃𝑐𝑡,𝑑𝑒𝑠 = cooling tower design power [kW] 

𝐾𝑝𝑢𝑚𝑝 = chiller pump constant dependent on load 

𝐾𝐶𝑝𝑢𝑚𝑝 = condenser pump constant dependent on load 

𝐾𝑐𝑡𝑜𝑤𝑒𝑟𝑓𝑎𝑛
 = cooling tower constant dependent on load 

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5= chiller empirical coefficients 

𝑥 = fractional loading of the chiller 

𝑦 = ratio between measured differential water temperature and design value 

𝑧 = ratio between calculated chiller power using Equation (2) and design power 

𝑃𝑐𝑜𝑚𝑝 = compressor power [kW] 

𝑃𝑝𝑢𝑚𝑝 = chiller pump power [kW] 

𝑃𝐶𝑝𝑢𝑚𝑝 = condenser pump power [kW] 

𝑃𝑐𝑜𝑚𝑝= compressor power [kW] 

∆𝑇𝑐ℎ𝑤 𝑜𝑝𝑡 = optimal chilled water differential [℉] 

∆𝑇𝑐𝑡𝑤 𝑜𝑝𝑡 = optimal condenser water differential [℉] 
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𝐾1, 𝐾2 = load dependent constant coefficient 

𝑇𝑐ℎ𝑤𝑟 = chilled water return temperature [℉] 

𝑇𝑐ℎ𝑤𝑠 = chilled water supply temperature [℉] 

𝑇𝑐ℎ𝑤𝑠 𝑜𝑝𝑡 = optimal chilled water supply temperature [℉] 

𝐶𝐻𝑊 𝐹𝑙𝑜𝑤 = valve’s authority [%] 

𝐶 = conversion constant 

𝐷𝑙𝑜𝑎𝑑 = design load [kW] 

Theoretical Background 

Previous literature revealed simple data driven models that are easy to implement and upgradable. Such 

models have been reported in literature as pragmatic ways to capture the energy performance of various HVAC 

system components (ASHRAE, 2019; Braun & Diderrich, 1990; Cascia, 2000). Equation (1) depicts the chiller 

performance equation and Equation (2) represent the total energy consumed by the HVAC system. 

𝐶𝑂𝑃 =
𝑁𝑒𝑡𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐸𝑓𝑓𝑒𝑐𝑡

𝑃𝑐𝑜𝑚𝑝 + 𝑃𝑝𝑢𝑚𝑝 + 𝑃𝐶𝑝𝑢𝑚𝑝 + 𝑃𝑐𝑡𝑜𝑤𝑒𝑟𝑓𝑎𝑛

 (1) 

𝑃𝑡𝑎𝑡𝑎𝑙 = 𝑃𝑐ℎ,𝑑𝑒𝑠(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑦 + 𝑎4𝑦2 + 𝑎5𝑥𝑦) + 

𝐾𝑝𝑢𝑚𝑝 (
1

∆𝑇𝑐ℎ𝑤
)

3

+ 𝐾𝑓𝑎𝑛 (
1

∆𝑇𝑐ℎ𝑤
)

3

 
(2) 

Here, the power consumption characteristic equations of the different HVAC components are commonly 

expressed heuristically in a quadratic form. Typically, the total power can be represented as a function of two 

variables, 𝑥 and 𝑦, where both are functions of the ∆𝑇𝑐ℎ𝑤. 

Our goal is to optimize these equations to minimize the power consumption. To implement the equations 

in real time, we need to find those coefficients of the power equations. Our first approach was to use the 

multivariate and quadratic approach that was founded in literature. The coefficients are calculated by fitting 

Equation (2) and the measured data using a multivariate polynomial least-square regression technique. 

Typically, Equation (2) can be minimized using calculus of variation approach and the optimum set-point can 

be calculated using the Newton-Raphson method. However, this approach requires a first approximation which 

can be difficult to implement in real time. Taking Equation (2) first derivative as shown in Equation (3) and 

equating it to zero results in a fifth-degree polynomial for which the coefficients can be difficult to evaluate in 

real time. The Python language was used to first put the initial strategy from literature into practice. However, 

we discovered that when used with the VOLTTRON platform, the Newton-Raphson method requires a 

significant amount of computational time when applied in real time. Despite our efforts to solve Equation (3) in 

a computationally efficient manner (3), we took a simpler approach as described in Section 4. 

𝑑(𝑃𝑡𝑜𝑡𝑎𝑙)

𝑑(∆𝑇𝑐ℎ𝑤)
=

𝜕𝑃𝑡𝑜𝑡𝑎𝑙

𝜕𝑥
∙

𝑑𝑥

𝑑(∆𝑇𝑐ℎ𝑤)
+

𝜕𝑃𝑡𝑜𝑡𝑎𝑙

𝜕𝑦
∙

𝑑𝑦

𝑑(∆𝑇𝑐ℎ𝑤)
− 3 ∙ (𝐾𝑝𝑢𝑚𝑝 + 𝐾𝑓𝑎𝑛) 

= 𝑃𝑐ℎ,𝑑𝑒𝑠 [2𝑎2 (
𝐶𝐻𝑊𝐹𝑙𝑜𝑤

𝐶 ∙ 𝐷𝑙𝑜𝑎𝑑
)

2

+ 2𝑎5 (
𝐶𝐻𝑊𝐹𝑙𝑜𝑤

𝐶 ∙ 𝐷𝑙𝑜𝑎𝑑
) + 2𝑎4] ∆𝑇𝑐ℎ𝑤

5  

+𝑃𝑐ℎ,𝑑𝑒𝑠 {
(

𝐶𝐻𝑊𝐹𝑙𝑜𝑤

𝐶 ∙ 𝐷𝑙𝑜𝑎𝑑
) [𝑎1 + 𝑎5(𝑇𝑐𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑟)]𝑎3 +

2𝑎4(𝑇𝑐𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑟)
} ∆𝑇𝑐ℎ𝑤

4 − 3 ∙ (𝐾𝑝𝑢𝑚𝑝 + 𝐾𝑓𝑎𝑛) = 0 

(3) 
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Test Site 

The current project’s test site is a multi-family housing property that is in Tempe, Arizona, USA. “Tides 

on South Mill or Solara at South Mill” is a large property owned by the FCP that is split into four quadrants. Each 

quadrant has roughly 130 apartments (FCP, 2021). The total floor area of each quadrant is about 94,000 sq. ft. 

The campus of Solara spreads over 27 acres. The mechanical system consists of a two-pipe system that runs chilled 

or hot water through individual Fan Coil Units depending upon the season. The fully configured and operational 

HVAC system has two 75 tons water cooled scroll chillers that provide chilled water to the apartments. 

The condenser is cooled using a cooling tower where the fan pushes high velocity air and cools the 

condenser water that is supplied from the chiller. The gas-fired boiler will supply hot water when seasonal 

change-over will take place. Figure 1 shows the mechanical configuration of the site. 
 

 
Figure 1. Power plant schematic at tides on South Mill. 

 

Here, the central HVAC system is equipped with the latest equipment available on the market. This retrofit 

allows for an easy integration of the data pipeline and fast communication between the building management 

system (BMS) and the cloud. 

For the cloud platform, our project utilizes VOLTTRON as a microcontroller to retrieve data from the IoT 

sensors located on the HVAC equipment. This approach is an improvement from existing products and custom 

tailored for advanced system optimization. Such optimization does not exist in the target market and is only 

offered where Building Management System is present in high-end commercial building markets, specialized 

facilities such as in life science, higher education, and healthcare markets. 

https://www.tidesonsouthmill.com/
https://www.tidesonsouthmill.com/
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VOLTTRON is a flexible, reliable, and scalable patented open-source platform for distributed control and 

sensing. It is particularly suitable for the industry. Developed at PNNL with funding from DOE, it is freely 

available for commercial enterprise to use. VOLTTRON uses agents-based architecture to connect devices and 

run applications. VOLTTRON serves as a single point of contact for interfacing with devices (rooftop units, 

building systems, meters, etc.), external resources, and platform services such as data archival and retrieval 

(VOLTTRON, 2021). 

The ability to use low-cost hardware (Raspberry Pi, 2023) and software platform (Python, 2021) using 

open architecture of VOLTTRON makes the overall solution affordable, expandable, and flexible. Figure 2 

shows a simple VOLTTRON architecture that connects many appliances and devices seamlessly. 
 

 
Figure 2. Innovative approach using VOLTTRON (VOLTTRON, 2023). 

Data Driven Analysis 

Before we started assessing the performance data of the different power consuming components, we 

plotted the full range of data collected between 10/01/21 and 11/09/21 representative of the entire cooling 

season from our test site located in Arizona, Tempe. As seen in Figure 3 below, the data reveal that the power 

consuming components are operating at a very narrow range. 

In fact, system pump, and condenser fan—all were operating at a constant speed although all this equipment 

has variable speed drives. Additionally, our analysis revealed some variability in power consumption profile of 

cooling tower fan but in a narrow operating range. Focusing on chiller power consumption data collected 

between October and November 2022, we found most of the operating values are very close to each other. 

As a result, we decided to use a sample of the data to calculate x, y, and z using a python calibration script. 

Note that x, y, and z are defined in Section 2, Nomenclature. Once the calibration script scans the dataset file, 

the empirical coefficients from Equation (2) 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝐾𝑝𝑢𝑚𝑝, and 𝐾𝑓𝑎𝑛, are computed. The 

following results are obtained as shown in Table 1. As seen in Table 1, the coefficients 𝑎2, 𝑎4 are negative. 
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Additionally, a weak correlation coefficient 𝑅2 = 0.0499 is obtained when the chiller model is a 

function of both cooling load and water temperature. This result can be explained due to the lack of variance in 

the water temperature data obtained from the site. 

 
Figure 3. Chilled water temperature profile for chiller. 

 

Table 1 

Coefficient of Regression as a Function of Load and Temperature 

Coefficient description Calculated values 

a0 0.12436944 

a1 2.17256312 

a2 -0.4259924 

a3 0.36552359 

a4 -1.9205811 

a5 0.36971378 

 
Figure 4. Chiller power calibration as a function of cooling load and water temperature. 
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Once this observation was made, we decided to check if the model can be improved by forcing the coefficient 

𝑎3, 𝑎4, 𝑎5 to zero. Equation (2) was rewritten as a function of cooling load making it a simple 2nd order polynomial 

where 𝑎0 is the y-intercept, 𝑎1 is multiplied to x and 𝑎2 multiplied with x raised to the second power. Table 

2 shows the coefficients calculated after running the calibration script. By modifying the chiller model as a quadratic 

function of cooling load, the correlation coefficient improved significantly with a value of 𝑅2 = 0.9117. With 

limited data, we decided to use a simpler linear approach. Table 3 depicts the analytical results from the initial 

linear simulation. Figure 5 shows the daily cyclic variation in outdoor temperature during implementation. 
 

Table 2  

Coefficient of Regression as a Function of Load and Temperature Modified 

Coefficient description Calculated values 

a0 0.00478467 

a1 1.34861066 

a2 -2.3436457 
 

Table 3 

Error Between Calculated Power vs. Measured Power for Data in Figures 

Analytical description 
Initial linear model simulation 

Chiller-side linear model Condenser side linear model 

% Error 0.1832129 0.40538974 

RMSE 1.94279075 2.24660928 

R-squared 0.9993 0.9977 

Equation y = 1.355x - 5.6936 y = 1.6844x - 6.0443 
 

 
Figure 5. Outside temperature during implementation. 

 

Grafana Cloud is the modular observability platform that integrates the HVAC system data (Grafana, 

2023). Using this tool helps us access the best open-source observability software, such as Prometheus, Loki, 

and Tempo, without the hassle of installing, maintaining, and scaling our observability stack. Figure 6 depicts 

the dashboard of sample data collected. 
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Figure 6. IoT software for data visualization (Graphana, 2021). 

 

 
Figure 7. Implementation of cooling plant optimization on the chilled water side. 
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Figure 8. Implementation of cooling plant optimization on the cooling tower-side. 

 

Figure 7 shows that cooling plant operates and tracks optimized setpoints well using linear regression. The 

optimized setpoints were successfully deployed at the test site from November 12th till November 16th. 

In Figure 7, we can see that our optimized set points stayed well above the operational limits, as denoted 

by the green line. During this preliminary test, the optimization script was able to reset the setpoint every 15-20 

minutes following the logic of our optimization algorithm. Based on a discussion with the plant operators, we 

have decided not to go below a minimum allowable value of 43.5 ℉. This observation is consistent with the 

leaving water setpoint in blue that is following closely the optimized setpoint determined by the BMS on the 

yellow line. 

Similarly, Figure 8 shows that the condenser water supply or leaving water temperature is below the 

optimized setpoint. The differential between the optimized setpoint and the actual condenser water supply can 

be explained by the uncertainty factor of the sensors. 

Further data analysis reveals that the data can be collected in different batches to ensure the power 

equations are properly calibrated. Thus, this approach can be implemented using weekly, monthly, and yearly 

data. 

Methodology 

Equations (4)-(12) show the derivation of our general linear regression model. The proposed linear 

optimization approach is based on the use of simple piecewise functions that can easily be applied in an 

algorithm to calculate and control the near optimal chilled water set points to minimize the cooling plant power 

consumption while satisfying cooling loads in the facility. This proposed approach allows the optimization 

script to re-calculate all coefficients used to characterize the HVAC system component models every 15 

minutes. This piecewise linear optimization approach calculates the optimized chilled water temperature while 

assuming that the time constant for chilled water temperature is on the order of 15-20 minutes for quasi-steady 

load state. Additionally, it is assumed that the water’s temperature is constant during the calculation of the 
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optimal chilled water temperature due to loop control. This implies that to calculate the optimal set point, both 

the flow rate of chilled water through the cooling coil and the flow rate of air across the cooling coil must be 

constant over 15 minutes. 

Mathematical Formulation 

Two Python functions are developed implementing the linear model of the optimization approach. The 

mathematical formulation is shown in Equations (4)-(12). The optimal water setpoint is determined using 

Equation (8) on the water loop and Equation (12) on the condenser water loop. 

Chilled water loop implementation. The first function implements the linear optimization algorithm on 

the chilled water side loop. Equations (4) and (5) show the linear power models used for this python function. 

The python code scans the measurement input data every 15-20 minutes to evaluate 𝐾𝑐𝑜𝑚𝑝 and 𝐾𝑝𝑢𝑚𝑝. 

 Input: chilled water supply, chilled water return, chiller power, system pump power. 

 Output: optimal chilled water set-point or none when the setpoint is not optimal. 

𝑃𝑐𝑜𝑚𝑝 = 𝐾𝑐𝑜𝑚𝑝 ∙ ∆𝑇𝑐ℎ𝑤 (4) 

𝑃𝑝𝑢𝑚𝑝 = 𝐾𝑝𝑢𝑚𝑝 ∙ (
1

∆𝑇𝑐ℎ𝑤
)

3

 (5) 

𝑃𝑡𝑜𝑡(∆𝑇𝑐ℎ𝑤) = 𝑃𝑐𝑜𝑚𝑝 + 𝑃𝑝𝑢𝑚𝑝 (6) 

𝑃𝑡𝑜𝑡(∆𝑇𝑐ℎ𝑤) = 𝐾𝑐𝑜𝑚𝑝 ∙ ∆𝑇𝑐ℎ𝑤 +  𝐾𝑝𝑢𝑚𝑝 ∙ (
1

∆𝑇𝑐ℎ𝑤
)

3

 (7) 

𝑑(𝑃𝑡𝑜𝑡)

𝑑(∆𝑇𝑐ℎ𝑤)
= 𝐾𝑐𝑜𝑚𝑝 −

3 ∙ 𝐾𝑝𝑢𝑚𝑝

∆𝑇𝑐ℎ𝑤
4 = 0 

∴ ∆𝑇𝑐ℎ𝑤 𝑜𝑝𝑡 = √
3 ∙ 𝐾𝑝𝑢𝑚𝑝

𝐾𝑐𝑜𝑚𝑝

4

 

(8) 

𝑇𝑐ℎ𝑤𝑠𝑜𝑝𝑡 = 𝑇𝑐ℎ𝑤𝑟 − ∆𝑇𝑐ℎ𝑤𝑠𝑜𝑝𝑡 (9) 

Condenser water loop implementation. The second function implements the linear optimization 

algorithm on the cooling-tower water side loop which is a similar approach from the previous function. 

 Input: condenser water supply, condenser water return, cooling tower fan power, condenser pump power. 

 Output: optimal chilled water set-point or none when the setpoint is not optimal. 

𝑃𝑡𝑜𝑡(∆𝑇𝑐ℎ𝑤) = 𝑃𝑐𝑡𝑜𝑤𝑒𝑟_𝑓𝑎𝑛 + 𝑃𝐶𝑝𝑢𝑚𝑝 (10) 

𝑃𝑡𝑜𝑡(∆𝑇𝑐𝑡𝑤) = 𝐾𝑐𝑡𝑜𝑤𝑒𝑟_𝑓𝑎𝑛 ∙ ∆𝑇𝑐𝑡𝑤 +  𝐾𝐶𝑝𝑢𝑚𝑝 ∙ (
1

∆𝑇𝑐𝑡𝑤
)

3

 (11) 

𝑑(𝑃𝑡𝑜𝑡)

𝑑(∆𝑇𝑐𝑡𝑤)
= 𝐾𝑐𝑡𝑜𝑤𝑒𝑟_𝑓𝑎𝑛 −

3 ∙ 𝐾𝐶𝑝𝑢𝑚𝑝

∆𝑇𝑐𝑡𝑤
4 = 0 

∴ ∆𝑇𝑐𝑡𝑤 𝑜𝑝𝑡 = √
3 ∙ 𝐾𝐶𝑝𝑢𝑚𝑝

𝐾𝑐𝑡𝑜𝑤𝑒𝑟_𝑓𝑎𝑛

4

 

(12) 

Open-source Python libraries such as NumPy, Scikit-learn, and Panda can be used to facilitate the data 

manipulation and computation (PNNL VOLTTRON, 2023). These tools, for instance, are open-source data 

manipulation and analysis tools that are quick, powerful, flexible, and simple to use on python. In this project, 

the library Matplotlib is utilized for further data visualization in collaboration with AceIoT engineers. 
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Integration Approach 

 
Figure 9. Solution architecture for central HVAC system configuration. 

 

Figure 9 shows an overall solution architecture for optimization. The data from the central HVAC system 

are acquired by the Building Management System (BMS). It is then passed onto VOLTTRON that is connected 

to the PNNL computing platform. Once the optimization is done, the optimized set-points are then sent to 

mechanical system via VOLTTRON and BMS. This is only possible in real-time due to the availability of IoT 

platform and all the elements—from sensing to cloud platform—that seamlessly integrate using open and 

interoperable hardware, software, and communication protocols. 

The data are then retrieved on a cloud platform for further processing to update power models. After the 

processing, the total system power is modeled mathematically as a sum of the cooling and heating plant 

component models. The mathematical models are re-evaluated every 15 to 20 minutes as load varies. Once the 

setpoints are determined, the results are then dispatched to VOLTTRON and ultimately, fed to the HVAC 

systems via BMS. 

Figure 10 shows an overall network using Digitalization, where data flows using Ethernet5 and BACnet6 

communications networks (VOLTTRON, 2023). This hybrid network essentially enables data communication 

among BAS, VOLTTRON, Energy Meter (EMON), and BMS front end. The BACnet network shows data 

flows across all the physical devices. For deployment in the target control system, the algorithm previously 

described was encapsulated in an Eclipse VOLTTRON agent and connected to the VOLTTRON System 

message bus. 

As depicted by Figure 10, the VOLTTRON platform driver framework collects data from the process 

equipment and publishes it to the message bus every 5 minutes. The agent subscribes to the data topics 

necessary to calculate the optimal setpoint, collects data as it is published to the bus, ensures it has the correct, 

synchronized values from the equipment then calculates the optimal setpoint. 
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The optimal setpoint is then published back to a new topic on the VOLTTRON message bus, collected by 

the platform historian and forwarded to the cloud data system. Raw data collected from the process equipment 

are similarly collected and forwarded to the cloud platform, enabling correlation of actual process state with the 

optimized output. 

If the write_to_equip configuration flag to the agent is set, on successful calculation of a new optimal 

setpoint, the agent will write the setpoint to the appropriate process controller. This setpoint is written through 

the VOLTTRON platform driver framework that includes controls that will revert the setpoint in the instance of 

a software issue, or a timeout of the setpoint. 
 

 
Figure 10. Implementation of VOLTTRON at test site. 

Results and Discussions 

First, we took a deeper look at the issue of data size that can be used for our regression approach. We 

could use short-term data, say daily or weekly or monthly or even the entire range of data collected during 2022 

cooling season (May till October) and October of 2021. The data fit improved as more data are used. However, 
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use of entire cooling season data did not increase computational time at all. Therefore, we decided to use entire 

seven-month data—from May till October in 2022 and October 2022—for linear regression. Tables 4 and 5 

show the regression equations evaluated during our investigation using seven-month data. 

Throughout the data monitoring phase of the project, various tests were conducted to validate the quality 

of the data. Moreover, the database history is constantly being monitored by the AceIoT with the help of PNNL 

scientists and engineers. This collaboration is important as it ensures that the sensors are well calibrated, and 

they can capture good data to calibrate the power models in real time. The next step of this project is to focus 

on the boiler power models during the winter season in Arizona. 
 

Table 4 

Chiller Side Regression Analysis 

HVAC component Regression analysis equation Coefficient of determination 

Chiller 1 y = 6.2929x 0.9325 

Chiller 2 y = 6.4475x 0.7418 

System pump y = 263.95x 0.1933 
 

Table 5 

Cooling Tower Side Regression Analysis 

HVAC component Regression analysis equation Coefficient of determination 

Cooling tower fan y = 1.1933x 0.1063 

Condenser pump y = 38.241x 0.1933 
 

Table 4 shows that the correlation coefficient for Chiller 1 is the highest. We have maximum number of 

operating points available for this chiller. The operating points available for Chiller 2 is low and as a result, the 

correlation coefficient value reduced to about 0.75. 

The coefficient values are even lower for the system pump, condenser fan, and condenser pump because 

all these equipment is running at constant speed and as a result, a very few diverse points are available for this 

equipment. 

Using seven-month data, the linear regression approach, in calculating constants in Equations (7) and (11); 

was able to realize an average energy saving of 39% on the chilled water side and 38% on the cooling 

tower-side, respectively. These energy savings were calculated using the collected data from the months 

mentioned in Tables 6 and 7. 
 

Table 6 

Energy Savings on Chilled Water Loop 

Months Percentage energy savings (%) 

October (2021) 17.0583614 

May (2022) 36.54871076 

June (2022) 32.21703369 

July (2022) 36.5291076 

August (2022) 39.34518858 

September (2022) 53.9218332 

October (2022) 28.97849067 

Average 34.94262754 
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Table 7 

Energy Savings on Tower-Side Water Loop 

Months Percentage energy savings (%) 

October (2021) 4.08093406 

May (2022) 13.23112433 

June (2022) 50.4269472 

July (2022) 58.90011747 

August (2022) 66.73209178 

September (2022) 55.40931465 

October (2022) 17.85015101 

Average 38.09009722 
 

As seen from the data, this optimization approach has the potential to create great energy savings in the 

multi-family housing market where HVAC systems often run sub-optimally. It is important to note that this 

approach requires close collaboration with the owner and operator to monitor and validate the quality of the 

data. 

Innovation Management for Commercialization 

McKinsey and Company (2020) after spending much with energy companies who were engaged in 

digitalization transformation, suggested a framework that can get success. The framework is shown in Table 8. 

According to McKinsey, “After much experience in the trenches, we have developed a digital transformation 

journey that breaks the inertia, unlocks large-scale value, and lasts” (McKinsey, 2020). The optimization 

solution presented in this paper heavily relies on data and simple analytics but executed in real-time. Since 

digitalization broadly depends on data and analytics (Gartner, HBR), it is appropriate to use digitalization 

framework that is presented by McKinsey for the commercialization of optimization solution. 

Three core elements or requirements of digitalization commercialization process are mentioned in the 

y-axis as value unlock, data and technology, and culture and capabilities or capacity. On the x-axis, six core 

elements of digitalization process are highlighted as roadmap, vision, MVP or minimum value product, 

industrialization or commercialization, scale and expansion, and platform. Table 8 shows various elements 

within digitalization requirements vs. process matrix that are self-explanatory. For example, McKinsey selected 

inventory technologies as a key ingredient as a vision for data and technology requirements. 

Following McKinsey’s example, a similar matrix was developed for commercialization of optimization 

solution. Here again, most of the matrix elements are self-explanatory but a few of them require elaboration as 

highlighted in Table 9. 

Open Collaboration and Innovation 

Intense collaboration is suggested with different potential real-estate companies, technology providers, 

investors, and even marketing companies, who can all work in a team environment with the sole focus on 

offering affordable decarbonization solutions in multi-family housing or large private apartments complex. 

Collaboration with public housing sectors at federal, state, and local government agencies is also highly 

recommended. The overall workflow shall create an eco-system through synergistic partnership and 

collaboration by adding values over the entire project life-cycle. 
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Table 8 

Digitalization Framework for Commercialization 

 

Open Platform 

An open platform for data and technology is recommended for cost-effective deployment, easy operation, 

and providing flexibility. The core of this platform is to deploy optimization algorithm in Python code and 

creating object models for all heating and cooling system and its components using standard Building 

Information Modeling (BIM) technologies. The open platform shall also use user-friendly graphical user 

interface where system can be configured, and object models will be created. The optimization application, 

written in Python Code, will be wrapped in a package with proper API. That way the optimization has easy 

plug-n-play feature and can be easily integrated with an external plug-in such as data curation software. In 

essence, the open platform shall provide interoperability and plug-n-play features that will have significant 

advantage of transferability of optimization solution from one site to the others. 

Use of AI and Transfer Learning 

An autonomous optimization can be envisioned that shall dramatically reduce the cost of deployment and 

operation and simplify the overall engineering process. For that, AI process needs to be developed. Data Driven 

Machine Learning Algorithm will essentially learn the pattern between the input variables such as outdoor 

temperature, cooling load, and output variable such as chilled water supply temperature setpoint. Once the 

pattern is learnt, another ML algorithm can be deployed for optimization. Since the entire approach is 

data-driven, the algorithm can be transferable from one site to another with some minor adaptation necessary to 

reflect change in system parameters such as capacity, types, location, etc. 
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Table 9 

Digitalization Framework for Optimization Solution 

Core elements Roadmap Vision MVP Industrialize Scale & expand Platform 

Value 

Open 

Collaboration & 

Innovation 

Best value in 

optimization 

service 

Low cost roof top 

units 

Product 

durability 

Expand to 

adjacent markets 

End-2-end cloud 

process 

Data & 

technology 
Open platform 

Use AI and 

transfer learning 

Agility and value 

proposition 
Clean code Code libraries API marketplace 

Culture & 

capacity 

Rapid 

development 
Collaborative Online service 

User community 

group 

Demonstrate 

value 

Formalize 

process 

Conclusions 

This paper presents a novel approach for using digitalization to develop affordable and open-source 

intellectual property that will help building owners realize savings and lower carbon emission in the building 

sector. 

The algorithm can be used to calculate near optimal setpoint for chilled water and condenser water 

setpoints temperature with a strategy that allows the BMS to actuate the HVAC components. Our experience 

tells that most critical component of our optimization approach is “Good Quality Data”. We found that overall 

IoT and VOLTTRON platforms have matured well and cost-effective but data must be monitored closely. In 

that respect, all sensors require annual calibration and even mechanical and electrical systems require a good 

“on-demand” service or maintenance plan. What is also important is a well-developed and documented 

technical document that qualifies a site, identifies the requirements, and assesses a site for its qualification for 

optimization. We also recommend for developing and implementing a simple configuration and commissioning 

plan. The range of savings generated in this “Proof of Concept” project is in the range of 25%-35% considering 

both heating and cooling plant optimizations. Although there is no guarantee that such savings can be achieved 

in general, the potential of such savings does exist in multi-family housing because the heating and cooling 

plants and distribution systems are not typically optimized. At the end, a brief commercialization framework 

plan has been discussed that can be implemented with special emphasis on collaborating with a diverse external 

companies and organization in order to create a valuable eco-system. 
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