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Abstract: Structural analysis problems can be formulized as either root finding problems, or optimization problems. The general 

practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant 

derivatives and equating them to zero. The second alternative is used very randomly as it is and only for some simple demonstrative 

problems, most probably due to difficulty in solving optimization problems by classical methods. The method called TPO/MA   

(Total Potential Optimization using Metaheuristic Algorithms) described in this study successfully enables to handle structural 

problems with optimization formulation. Using metaheuristic algorithms provides additional advantages in dealing with all kinds of 

constraints. 
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1. Introduction 

Structural analysis is one of the main tasks of 

structural engineers. It consists of determining the 

behavior of a given structural system under the effect 

of a given set of external effects like loads, temperature 

differences, mounting errors, forced displacements, etc. 

Classical approach in solving these problems starts by 

writing down equilibrium equations. In linear problems 

these equations form a linear set, i.e., a matrix equation 

of the form Ax = b, where x is an unknown vector with 

deflections as members, A is a square matrix describing 

the geometric and material properties of the structure, 

and b is the known load vector. Such a system can of 

course be solved using any convenient technique which 

does not lack in number and quality. In nonlinear 

problems it is often impossible to write down explicit 

equations in matrix form. In such cases various iterative 

techniques are used to reach a solution for problems at 

hand. 

The method described here, the TPO/MA (Total 

Potential Optimization using Metaheuristic Algorithms) 
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based on the consideration that structural analysis can 

well be formulated as optimization problems instead of 

root-finding problems, and the task of optimization that 

becomes primordial in the procedure can be performed 

with a meta-heuristic technique. The first part of this 

consideration is of course not new: a well-known 

principle in mechanics states that the total potential 

energy of a body in stable equilibrium is at minimum. 

Although this principle is a very fundamental one and 

gives way to many other techniques for structural 

analysis, it is conventionally used by itself only for 

demonstrative purposes for solving problems with a 

very few number of unknowns, say less than four, 

probably due to the difficulties encountered in reaching 

at a practical formulation and also in solving 

optimization problems with a large number of 

unknowns. Now with the advances in computer 

hardware and software, especially with the emergence 

of meta-heuristic algorithms, such a formulation 

became feasible and enabled the introduction of the 

TPO/MA technique. A third advantage of this energy 

formulation is seen at the point that with this way of 
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formulation, the difference between linear and non-

linear materials completely disappears, linear materials 

become treated as a simple special case of a general 

class of non-linear materials, thus enabling non-linear 

analysis conductible as a black-box operation. 

In the paper, the next section is devoted to the short-

comings of classical methods. This section will be 

followed by a description of TPO/MA and then by 

numerical examples. The last section is on conclusions 

and hints on future research. 

2. Short-Comings of Classical Methods 

Linear problems actually do form a very small 

percentage of real-life structural problems. Classical 

methods are very effective in solving these kinds of 

problems; they can be solved with black-box operations 

with no interaction of the user. Existing commercial 

and academic software packages are very advanced in 

forming the matrix equations mentioned above and 

solving them once the data of the problem are fed into 

the computer. 

This is not the case for non-linear structural analysis 

problems like  

 structures made of general non-linear materials 

(plastic, elastic-plastic, strain hardening, strain 

softening, tensionless, compression less materials; 

those with non-symmetrical stress-strain characteristics 

like buckling materials, bimodular materials), 

 tensegric structures, 

 multi-solution cases, before and after bifurcation, 

 compliant structures, 

 structures with one-sided constraints including 

those on tensionless foundations, 

 under-constrained structures, 

 structures with missing or failed elements, and 

those undergoing progressive failure. 

For these cases and for their combinations there do 

not exist well-established procedures and each problem 

in this category is solved as a special problem with a 

near-academic approach. The techniques used for 

analyzing such structures are mainly based on Newton-

Raphson type iterations or incremental loadings of the 

system [1-9]. The procedures thus developed are valid 

only for the special problem considered without being 

applicable to other ones. 

3. TPO/MA for Solving Structural Analysis 

Problems 

The formulation of structural analysis as an 

optimization problem to be solved by meta-heuristic 

algorithms is given elsewhere [10-13]. In what follows 

these presentations are summarized. 

The deformed shape of a truss is characterized by the 

displacement vector: 

ξT = [ξ11 ξ12 ξ13 ξ21 ξ22 ξ23 … ξNj,1 ξNj,2 ξNj,3]
T (1) 

where, ξij, i = 1, …, Nj, j = 1, 2, 3 represents the j’th 

component of the displacement of joint i, Nj being the 

number of joints. This means that the original 

coordinates: 

xij, i = 1, …, Nj, j = 1, 2, 3 (2) 

Of joint i, it become after the deformations. 

xij’ = xij +ξij, i = 1, …, Nj, j = 1, 2, 3 (3) 

According to these definitions, the new length L’pq 

of the member between joints p and q can be calculated 

as: 

𝐿𝑝𝑞
′ = √∑ (𝑥𝑝𝑗

′ − 𝑥𝑞𝑗
′ )23

𝑗=1  

=√∑ [(𝑥𝑝𝑗 + 𝜉𝑝𝑗) − (𝑥𝑞𝑗 + 𝜉𝑞𝑗)]23
𝑗=1  

(4) 

The uniform strain in the member, dropping the 

subscripts for simplicity, can then be calculated as: 

𝜀 =
𝐿′ − 𝐿

𝐿
 (5) 

The stress in the member can then be computed from 

the constitutive equation: 

𝜎 = 𝜎(𝜀) (6) 

which we assume to be continuous, single valued and 

integrable. The strain energy density stored in the 

member is then given by: 

𝑠 = ∫ 𝜎(𝜀)𝜀𝑑𝜀
𝜀

0

 (7) 

If the cross-sectional area of the member is A, then 
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the strain energy stored in that member becomes the 

strain energy density 𝑠 multiplied by the volume, i.e., 

𝑆 = 𝐴𝐿𝑠 (8) 

In general, stress-strain relation Eq. (6) can be 

visualized as in Fig. 1, with piecewise continuous linear 

functions defined by pairs of stress-strain points. 

Typical examples are: 

(1) (-10, -2,000,000), (0,0), (-10, -2,000,000): linear 

elastic behavior, with |εmax| = 10, i.e. practically infinite, 

and modulus of elasticity E = 200,000 N/mm2; 

(2) (-0.08, -16,000), (0, 0), (0.08, 16,000): linear 

elastic behavior, with rupture at |εmax| = 0.08, and 

modulus of elasticity E = 200,000 N/mm2; 

(3) (-10, -400), (-0.002, -400), (0, 0), (0.002, 400), 

(10, 400), elastic-plastic behavior, elastic behavior for 

|εmax| < 0.002 with E = 200,000 N/mm2; 

(4) (-10, -400), (0, -400), (0, 0), (0, 400), (10, 400), 

plastic behavior, yield stress = 400 N/mm2; 

(5) (-10, -500,400), (-0.04, -600), (-0.02, -400), (0, 

0), (0.02, 400), (0.04, 600), (10, 500,400), strain 

hardening behavior, E starts from the original value of 

20,000 N/mm2 and diminishes gradually; 

(6) (-10, -100), (-0.006, -100), (-0.004, -150), (-0.003, 

-200), (-0.002, -400), (0,0), (0.002, 400), (10, 400), 

asymmetrical stress strain behavior in tension and 

compression: elastic-plastic under tension, buckling 

under compression; 

(7) (-10, -200,0000), (0,0), (10, 0), tensionless 

behavior; 

(8) (-10, 0), (0, 0), (10, 200,0000), compression less 

behavior (cable); 

(9) (-10, -100,000), (0, 0), (10, 200,000), bimodular 

material, with moduli of elasticity E = 100,000 N/mm2 

in compression and E = 200,000 N/mm2 in tension,  

etc. 

For example, on tension side, these behaviors can be 

generalized as the r+1 pairs of type. 

(εi, σi), εi+1 ≥ εi, i = 0, 1, …, r (9) 

Then it can be shown that for a given strain ε, 

the stress σ and the strain energy density s, can be 

calculated from Eq. (12). 

 

 

 

Fig. 1  Stress-strain diagram for nonlinear materials. 
 

Case 1: 

For 

ε < εr
- and ε > εr

+ then σ = 0, s = 0 (10a) 

Case 2:  

For 

εp ≤ ε ≤ εp+1 

then 

𝜎 = 𝜎𝑝 +
𝜎𝑝+1−𝜎𝑝

𝜀𝑝+1−𝜀𝑝
(𝜀 − 𝜀𝑝), 

𝑠 = ∑
𝜎𝑖+𝜎𝑖+1

2
(𝜀𝑖+1 − 𝜀𝑖) +

𝜎+𝜎𝑝

2
(𝜀 − 𝜀𝑝)

𝑝
𝑖=0  

(10b) 

It can be seen from Eq. (10a) that Case 1 corresponds 

to the rupture of the material with εr
- and εr

+ being the 

rupture values on compression and tension sides, 

respectively. The strain energy density, s, as calculated 

from Eq. (10b) is nothing but the shaded area shown in 

Fig. 1. 

This approach obviously indicates that the 

calculations for a linear elastic material and for a very 

complicated unsymmetrical behaving material are 

practically of the same order of difficulty. Linear 

materials do form only a special case of nonlinear 

materials. No material necessitates any kind of special 

treatment; there is no need to make different 

formulations for any kind of materials. 

The only exceptions to these representations are 

continuous functions. They can be treated in this 

Stresses

Strains 
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approach even with less difficulty if the stress-strain 

function given as in Eq. (6) is integrable, as one of the 

assumptions states [10]. 

If all the members of the truss are considered, then it 

will be more convenient to write Eq. (8) in the form: 

𝑆 = ∑ 𝐴𝑖𝐿𝑖𝑠𝑖

𝑁𝑚

𝑖=1
 (11) 

where Nm is the number of members. Adding to this 

term algebraically, the work done by the external forces, 

one obtains the final total potential of the system: 

𝛱 =  ∑ 𝐴𝑖𝐿𝑖𝑠𝑖 − ∑ 𝑃𝑘𝑑𝑘

𝑁𝑃

𝑘=1

𝑁𝑚

𝑖=1
 (12) 

where Pk’s are the external load components applied to 

the structure, dk’s are the displacements corresponding 

to these components, and NP is the number of load 

components. It is evident that dk’s correspond to the 

displacements ξij where non-zero load component 

exists. 

The symbol Π represents the scalar function to be 

minimized, which is a function of the variables ξij 

corresponding to the components of the nodal 

displacements. The number of these components will 

be 2Nj for plane systems, and 3Nj for space trusses, 

respectively, if there are no constraints at all. In fact, 

some of them, corresponding to the supports, are zero. 

There may be some other constraints on ξij’s of the form. 

ξij < a, ξij ≤ a, a ≤ ξij< b, ξij = aξik (13) 

Then the final formulation of the structural analysis 

problem becomes: Determining ξ as defined in Eq. (1), 

satisfying the constraints of the problem and 

minimizing 𝛱(𝜉) as given in Eq. (12). 

After finding the displacements following this 

optimization process, the member forces and the 

relevant support reactions are determined, as in the 

classical methods, to complete the structural analysis. 

The problem, formulated as above can be attacked 

by any of the appropriate optimization methods. In 

TPO/MA, the preferred techniques are meta-heuristic 

algorithms. Applications of various algorithms of this 

kind have already given very satisfactory results. It 

seems that the only restriction on the choice of these 

algorithms is their suitability in dealing with problems 

of continuous variables. 

In meta-heuristic algorithms, the candidate set of 

vectors to be improved may consist of one vector only, 

or may form a population with a number of vectors. In 

the first group one can count Local Search and 

Simulated Annealing methods, both exploited in 

TPO/MA. The methods tried in the second group are 

Genetic Algorithms, Harmony Search, Ant Colony 

Optimization and Particle Swarm Optimization. 

Whatever the special algorithm chosen is, the general 

procedure applied in this study can be shown as in the 

flow chart demonstrated in Fig. 2 [12]. The only 

algorithm, as far as the authors are aware, which does 

not exactly fit in this flow chart is the Ant Colony 

optimization among the ones applied. 

Application procedures of different algorithms do 

not show significant differences in many steps in this 

flow chart. The steps that are algorithm-dependent are 

the ones related to creation of base and candidate 

configurations, and the one related to redefinition of 

base configuration. To give some examples, in Local 

Search and Simulated Annealing, the set of base and 

candidate vectors consists of one single vector only, 

while in the others the same set may contain tons of 

configurations. In Local Search the next base vector is 

taken to be the best of the old base vector and the 

candidate vector, while in Simulated Annealing there 

are instances where the worse of the two vectors can be 

chosen to be the next candidate vector. Application of 

Genetic Algorithms necessitates use of many special 

operators like selection, mating, cross-over, and 

mutation in the phase of creation of the next candidate 

vectors. Harmony Search makes use of its memory in 

this phase. Thus, the flow chart given has to be 

considered only as a general guide to TPO/MA, it will 

have many special steps when attached to a particular 

algorithm. 

4. Applications 

The TPO/MA method described above is applied to 
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an important number of trusses under different loading 

and support conditions to test the success of the method 

as to the accuracy and robustness. In the following 

paragraphs results of three applications are presented. 

In these analyses, we have applied metaheuristic 

algorithms like random search, simulated annealing, 

harmony search, genetic algorithms, ant colony 

optimization, all with success. 

4.1 2-Bar Truss (Von Misestruss) 

The truss shown in Fig. 3a is analyzed for        

an important range of loads and the results are 

compared with already existing ones from literature [10, 

14]. This simple system which has two degrees of 

freedom, i.e., the vertical and horizontal displacements 

of the hinged point at the middle, enabled the drawing 

of the total potential surface shown in Fig. 3b. The 

figure clearly shows the two stable—one global and 

one local, and one unstable solutions of the truss. The 

stable solutions correspond to the pits on the surface, 

and the unstable solution is on the ridge between the 

pits. 
 

 
Fig. 2  Flow chart of TPO/MA [12]. 
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(a) 

 
(b) 

Fig. 3  (a) Probable stable equilibrium configurations of the 2-bar truss; (b) Total potential energy surface. 
 

4.2 25-Bar Space Truss 

The truss shown in Fig. 4a is solved for a series of 

loads [14]. The deformed shape S1 in Fig. 4b 

corresponds to a configuration with loads causing  

small deformations. The shapes S2, S3, and S4 

correspond to configurations that are obtained for  

loads exceeding a certain level. It is obvious that this 

situation corresponds to the case of multiple solutions 

and it is practically impossible to obtain these shapes 

with normal applications of classical methods 

including those based on finite element method. 

Application of the technique TPO/MA, on the other 

hand, does not necessitate any special arrangement for 

finding these configurations except some small 

variations which are nothing more complicated than 

attacking the problem more than once with random 

starting values and keeping the step sizes narrower than 

normal. 

4.3 26-Bar Plane Truss 

The third example presented in this study is the truss 

with the original shape shown in Fig. 5 with linear 

elastic members. The deformed shape corresponding to 

small loads is shown in Fig. 5a, which can easily be 

obtained by any classical method also. The other 

solutions which correspond to the cases of very large 

deformations, under-constrained truss and missing or 

failed members are obtained by applying TPO/MA to 

the problem with no special arrangement at all. It is to 

be noted that for all these cases the loading on the 

structure is the same. 
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(a) 

 
(b) 

Fig. 4  (a) 25-bar space truss, (b) different configurations after loading. 
 

5. Conclusions 

Although the method TPO/MA presented can be 

applied to analysis of all structural systems, the first 

applications are made on trusses and truss-like 

structures for checking its speed, accuracy and 

robustness. The results have shown that as far as 

accuracy and robustness are concerned, the method    

is above all expectations. As to the speed of the  

method, the satisfaction is not at a perfect level, but this 

can be understandable since the problems attacked 

cannot be solved by any other method in a general way. 

The problems solved include structures like 2 and    

3 dimensional normal trusses, cable structures, 

tensegric structures, etc. with all types of non-linear 

materials including plastic, elastic-plastic, tensionless 

materials with or without rupture values and buckling 

properties. One-sided constraints, multi-solution 

problems, behavior of structures after bifurcation are 

also examined. It has been observed that all these 

problems can be solved by TPO/MA as black box 

operations. 
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(a) Small deformations 

 
(b) Large deformations 

 
(c) Large deformations, under-constrained structure 

 

 
(d) Large deformations, under-constrained structure,  

1 member missing 

 
(e) Large deformations, under-constrained structure,  

2 members missing 

 
(f) Large deformations, under-constrained structure,  

3 members missing 

Fig. 5  Screen-shots from TPO/MA analysis results for 26-bar truss. 
 

Genetic algorithms, simulated annealing, ant colony 

optimization, random search and harmony search are 

optimization techniques used until now in MA part of 

TPO/MA in our studies, all with great satisfaction. This 

has shown that other meta-heuristic techniques can also 

be used in optimization part of the process. 
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The results presented in the paper demonstrate the 

level of research on TPO/MA. Future research subjects 

are also treated. 

A literature survey conducted on the applications of 

meta-heuristic algorithms on structural systems shows 

that these studies are almost exclusively concentrated 

on design of structures, like minimization of their costs 

and finding the most convenient type and topology of 

such systems. TPO/MA extends this study area to 

analysis of structures in a very effective way. 
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