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Abstract: The dynamic characteristics and the efficiency of the Ostrowski’s method allow it to be crowned as an excellent tool for 

solving nonlinear problems. This article shows different versions of the classic method that allow it to be applied to a wide range of 

engineering problems. Among them stands out the derivative-free definition applying divided differences, the introduction of memory 

and its extension to the resolution of nonlinear systems of equations. All of these versions are compared in a numerical simulations 

section where the results obtained are compared with other classic methods. 
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1. Introduction  

Iterative methods arise to solve the problem of 

finding the zeros of functions whose nature is not linear. 

Numerical methods must find a balance between 

efficiency and accuracy. As far as possible, the method 

must commit to being computationally efficient and 

optimal, which gives it strength, robustness and a wide 

range of applications. The starting point of the problem 

of finding the zeros of a nonlinear function          

𝑓: 𝐼 ⊆ 𝑅 → 𝑅 that is, we set out to solve 𝑓(𝑥) = 0. 

Nowadays, there are a great variety of iterative methods 

that offer a range of exact and efficient solutions to this 

type of problem. Among all, the Newton’s method 

stands out for its simplicity and efficiency. 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 (1) 

A numerical method is said to be optimal if it keeps 

the balance between efficiency and the computational 

cost necessary to solve a given problem.  

The order of convergence 𝑝  of the method is 

defined in Refs. [1] and [2]. 

lim
𝑘→∞

|𝑥𝑘+1 − 𝛼| 

|𝑥𝑘 − 𝛼|𝑝
= 𝐶 (2) 

The efficiency index I of the method compares the 
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order of convergence p with the number of functional 

evaluations per iteration d. 

𝐼 = 𝑝
1

𝑑⁄  (3) 

The error equation of a 𝑝-order method is defined 

by the following equation. 

𝑒𝑘+1 = 𝐶𝑒𝑘
𝑝

+ 𝑂(𝑒𝑘
𝑝+1

) (4) 

2. Classic Ostrowski’s Method 

Multistep methods were developed to improve the 

local order of convergence of classic methods and thus 

to improve the efficiency index. Among these methods 

Ostrowski’s method is found which is optimal in the 

sense of the Kung-Traub’s conjecture. 

Ostrowski’s method belongs to King’s family, which 

is defined in Ref. [3]: 

𝑦𝑘 = 𝑧𝑘 −
𝑓(𝑧𝑘) 

𝑓′(𝑧𝑘)
 (5) 

𝑧𝑘+1 = 𝑦𝑘 −
𝑓(𝑧𝑘) + (2 + 𝛽)𝑓(𝑦𝑘) 

𝑓(𝑧𝑘) + 𝛽𝑓(𝑦𝑘)

𝑓(𝑦𝑘)

𝑓′(𝑧𝑘)
 (6) 

In order to obtain the iterative expression of the 

Ostrowski’s method, the value of 𝛽 =  −2  must be 

replaced in the previous expression. 

𝑦𝑘 = 𝑥𝑘 −
𝑓(𝑥𝑘) 

𝑓′(𝑥𝑘)
 (7) 
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𝑥𝑘+1 = 𝑦𝑘 −
𝑓(𝑥𝑘) 

𝑓(𝑥𝑘) − 2𝑓(𝑦𝑘)

𝑓(𝑦𝑘)

𝑓′(𝑥𝑘)
 (8) 

According to the following expression, Ostrowski’s 

method has a convergence order four and therefore, 

according to the Kung-Traub conjecture, it is an 

optimal method since it uses three functional 

evaluations per iteration. 

Error = (𝐶2
3 − 𝐶2𝐶3)𝑒4 − 

2(2𝐶2
4 − 4𝐶2

2𝐶3 + 𝐶3
2 + 𝐶2𝐶4)𝑒5 + 𝑂[𝑒]6 

(9) 

This method carries out three functional evaluations 

per iteration therefore, it has an efficiency index      

 I ≈ 1.5874 higher than Newton’s method. 

In addition, according to the Kung-Traub’s conjecture, 

it has the maximum order for its corresponding number 

of functional evaluations therefore, it is confirmed that 

Ostrowski’s method is an optimal method. 

3. Derivative-Free Ostrowski’s Method 

Ostrowski developed two methods of third and 

fourth order of convergence respectively and each of 

them requires the evaluation of two functions and one 

derivative per iteration. 

Sometimes the functions are not differentiable at 

certain points that in most cases match with the solution 

points of the equation or simply its derivative requires 

a high computational cost, sacrificing the efficiency.  

For solving this problem, the derivative-free iterative 

methods arise, these are based on a new definition of 

the derivative defined by the divided differences. Every 

iterative method can be transformed into a derivative-

free method, but its order of convergence is not always 

preserved. The classic derivative-free method is 

Steffensen’s method which is an optimal method too. 

This has the following iterative expression: 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘) 2

𝑓(𝑥𝑘 + 𝑓(𝑥𝑘)) − 𝑓(𝑥𝑘)
 (10) 

According to the following expression, the 

derivative-free Ostrowski’s method defined by using 

divided differences of type 𝑓[𝑥𝑘 , 𝑥𝑘 + 𝑓(𝑥𝑘)] has a 

convergence order three and therefore, according to the 

Kung-Traub’s conjecture, it is no longer an optimal 

method. 

Nevertheless, the derivative-free Ostrowski’s 

method defined by using divided differences of type 

𝑓[𝑥𝑘 , 𝑥𝑘 + 𝑓(𝑥𝑘)2] recovers fourth order of 

convergence and therefore the method is optimal again. 

𝐸𝑟𝑟𝑜𝑟 = 𝐶2(−𝑑𝐹𝑎2𝐶2+𝐶2
2 − 𝐶3)𝑒4

+ 𝑂[𝑒]5 
(11) 

4. Ostrowski’s Method with Memory 

In order to increase the order of convergence, 

methods with memory arise which include in their 

iterative expression one or more iterations prior to the 

current one 𝑥𝑘 , 𝑥𝑘−1, … , 𝑥𝑘−𝑛. 

The classic method with memory is Secant’s method, 

which is defined by using divided differences of type 

𝑓[𝑥𝑘−1, 𝑥𝑘]  in Newton’s method. According to the 

following expression, Secant’s method performs a 

single functional evaluation per iteration, which 

increase the efficiency index of the method until 1.618.  

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1)

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)
 (12) 

Ostrowski’s method defined by using an accelerant 

parameter 𝛾  has a convergence order three. 

Nevertheless, replacing the parameter 𝛾 = −𝐶2  it is 

possible to void the term 𝑒3 and recover the fourth 

order of convergence. 

𝐸𝑟𝑟𝑜𝑟 = (−𝐶2
3 + 2𝐶2𝐶3)𝑒4 + 

(𝐶2
4 − 2𝐶2

2𝐶3 − 2𝐶3
2 + 3𝐶2𝐶4)𝑒5 + 𝑂[𝑒]6 

(13) 

5. Dynamics of Ostrowski’s Method 

The stability of a method is a measure of the 

feasibility of initial estimates sets and it is considerate 

a discriminant factor in the selection process. 

This section contains complex dynamics tools 

widely developed in Refs. [4] and [5]. 

In the study of King’s family stability, the fixed 

points, the rational operator and all the analysis tools 

will depend on the parameter 𝛽, which allows studying 

the existence of a value of 𝛽  that improves the 

stability of the rational operator, so it allows finding 

elements of the family that are more stable than others.  
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𝐾𝑝(𝑧, 𝛽) = 𝑧4
5 + 𝑧2 + 2𝛽 + 𝑧(4 + 𝛽)

1 + 𝑧(4 + 𝛽) + 𝑧2(5 + 2𝛽)
 (14) 

By looking at the exponent of this expression, it can 

be deduced that the order of convergence of this family 

is four and replacing 𝛽 = −2 in the previous 

expression, the rational operator of Ostrowski’s method 

is obtained. 

𝐾𝑝(𝑧, −2) = 𝑧4 (15) 

In order to obtain fixed points of King’s family, the 

following equation must be solved. 

𝐾𝑝(𝑧, 𝛽) = 𝑧 (16) 

Once the previous equation is solved, the points  

𝑧 = 0 and 𝑧 = ∞ which are conjugate fixed points are 

obtained. 

Once the fixed points have been calculated, next step 

is to obtain the critical points by solving the equation 

𝑅′(𝑧) = 0. Thus, the critical points obtained are 𝑧 = 0 

and 𝑧 = ∞. For 𝛽 = −2, it is known that there are no 

free critical points, therefore, there are no critical points 

that are neither 𝑧 = 0 or 𝑧 =  ∞. As in each basin 

there is a critical point and the only critical points are 

the roots, there are no basins different from the roots, 

this means that there is only one possible attractor 

behavior, the convergence of the roots. This feature 

provides the Ostrowski’s method with excellent 

dynamic behavior. 

The figure 1 shows the dynamic plane of 

Ostrowski’s method in which the fixed points are 

represented with a white circle, the attractors with a star 

and the critical points with a square. 
 

 
Fig. 1  Ostrowski’s dynamic plane. 

 

In this dynamic plane there are no black regions, 

which means that it is a stable method. This is because 

there are no critical points different from the two roots, 

then the only possible behavior is to converge to them. 

Only two basins of attraction (orange and blue) are 

observed, which correspond to these roots. Furthermore, 

there are two superattractors corresponding to 𝑧 = 0 

and 𝑧 =  ∞, which supports that the dynamic behavior 

of this method is stable. For instance, the orbit 

described by any point of the attraction basin is shown, 

where it can be seen that the orbit converges to the 

superattractive fixed point 𝑧 = 0. 
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Fig. 2  Orbit. 

 

6. Numerical Simulations 

In this section, the Ostrowski method and its variants 

mentioned above are applied to the resolution of 

equations and nonlinear systems, comparing the 

obtained results with another classical methods. All 

results include their approximate computational order 

of convergence, usually called ACOC defined by 

Cordero and Torregrosa in Ref. [6]. 

𝑝 ≈  𝐴𝐶𝑂𝐶 =
ln (

𝑥𝑘+1−𝑥𝑘

𝑥𝑘−𝑥𝑘−1
)

ln (
𝑥𝑘−𝑥𝑘−1

𝑥𝑘−1−𝑥𝑘−2
)
 (17) 

The following cases will be analyzed: 

 Find the zeros of two nonlinear functions applying 

classic Ostrowski’s method and comparing the results 

obtained with Newton’s method. 

 Find the zeros of two nonlinear functions applying 

derivative-free Ostrowski’s method and comparing the 

results obtained with Steffensen’s method. 

 Find the zeros of two nonlinear functions applying 

Ostrowski’s method with memory and comparing the 

results obtained with Secant’s method. 

 Solve a nonlinear system of equations applying 

classic Ostrowski’s method and comparing the results 

obtained with Newton’s method. 

The following two nonlinear equations will be 

solved to find its zeros on basis of begin point 𝑥0 until 

solution 𝑥̃ is obtained with a tolerance of 10−8 in a 

𝑖 number of iterations. 

𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) − 𝑥 

𝑔(𝑥) = 𝑥3 − 10 

In the first case, the results obtained by applying 

classic Ostrowski’s method versus results obtained 

with Newton’s method are shown in Table 1. 
 

Table 1  Classic Ostrowski versus Newton. 

Classic Ostrowski 

Function 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) 1 0,7391 3 3,4628 

𝑔(𝑥) 2 2,1544 4 4,0445 

Newton 

Function 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) 1 0,7391 4 1,9988 

𝑔(𝑥) 2 2,1544 7 2,0007 
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In the second case, the results obtained by applying 

derivative-free Ostrowski’s method defined by two 

types of divided differences versus results obtained 

with Steffensen’s method are shown in Table 2. 
 

Table 2  Derivative-free Ostrowski versus Steffensen. 

Ostrowski 𝒇[𝑥𝑘 , 𝑥𝑘  +  𝒇(𝑥𝑘)] 

Function 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) 1 0,7391 3 2,9729 

𝑔(𝑥) 2,1 2,1544 4 3,0248 

Ostrowski 𝒇[𝑥𝑘 , 𝑥𝑘  +  𝒇(𝑥_𝑘)𝟐] 

Function 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) 1 0,7391 3 4,0049 

𝑔(𝑥) 2,1 2,1544 3 5,1469 

Steffensen 

Function 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) 1 0,7391 4 1,9999 

𝑔(𝑥) 2,1 2,1544 6 2,0002 

 

In the third case, the results obtained by applying 

Ostrowski’s method with memory versus results 

obtained with Secant’s method are shown in the 

following table. 
 

Table 3  Ostrowski with memory versus Secant. 

Ostrowski with memory 

Function 𝑥−1 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) -1 0 0,7391 4 3,0072 

𝑔(𝑥) 1 2 2,1544 3 2,9826 

Secant 

Function 𝑥−1 𝑥0 𝑥̃ 𝑖 ACOC 

𝑓(𝑥) -1 0 0,7391 7 1,6205 

𝑔(𝑥) 1 2 2,1544 6 1,5221 
 

Last case the following 2𝑥2  nonlinear system is 

solved and the results obtained by applying Classic 

Ostrowski’s method versus results obtained with 

Newton’s method are shown in the following table. 

{
𝑦 = 𝑥2 − 2𝑥 + 1

𝑦 = −2𝑥2 − 3𝑥 + 1
 (18) 

 

Table 4  Classic Ostrowski versus Newton. 

System of equations 

Method 𝑥 𝑦 𝑖 ACOC 

Newton 1 0 8 1,9835 

Ostrowski 1 0 7 1,9957 

7. Conclusions 

Ostrowski’s method is optimal in the sense of the 

Kung-Traub’s conjecture. 

Ostrowski’s method has an excellent dynamic 

behavior because it does not have critical points 

different from the two roots, then the only possible 

behavior is to converge to them. 

In this dynamic plane of Ostrowski’s method there 

are no black regions, which means that it is a stable 

method. It only has two basins of attraction (orange and 

blue) which correspond to the roots. Furthermore, there 

are two superattractors corresponding to 𝑧 = 0  and 

𝑧 =  ∞, which supports that the dynamic behavior of 

this method is stable. 

About the results obtained in above cases where 

Ostrowski’s method and its variants have been 

compared with another classical methods, from the 

same starting point all methods converge to the same 

solution. However, Ostrowski’s method is more 

efficient since it uses fewer iterations to obtain the same 

result, so its computational cost is less than Newton’s 

method. 

Derivative-free methods need greater precision with 

starting point estimation to avoid convergence 

problems. For instance, in function 𝑔(𝑥)  the initial 

point has been adjusted to 𝑥0 = 2.1 whereas in classic 

Ostrowski’s method or Newton’s method it is enough 

to estimate the initial point at 𝑥0 = 2. 

It can be seen that the ACOC coefficient is close to 

the order of convergence of each method, taking into 

account that the order of convergence is theoretical and 

the ACOC is nothing more than a numerical 

approximation. Nevertheless, in the case of 

Ostrowski’s method with memory it is observed that 

the ACOC obtained is one order lower than should 

theoretically be obtained using the accelerator 

parameter 𝛾. This is a clear example that introducing 

accelerators does not always preserve the order of 

convergence of the classic method, less if the 

derivatives are replaced by divided differences. 

Therefore, to preserve the order of convergence the key 
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is a great quality with derivatives approximation. 

In the case of systems of equations, ACOC either 

preserves the order of convergence of the classic 

Ostrowski’s method, since the order of convergence of 

this method is 4 and in the analyzed system it hardly 

reaches the order 3. 
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