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Some Financial Problems in the Light of EMM Results:  

Asset Pricing and Efficient Portfolio Allocation 

Valery V. Shemetov 

 

Discussing results in asset pricing and efficient portfolio allocation, we show that mixed success and errors in these 

results often follow from a lack of information about the asset return distribution and wrong assumptions about its 

properties. Some mistakes in asset pricing come from the assumption of symmetry in return distributions. Some 

errors in efficient portfolio allocation follow from Markowitz’s approach when applying it to portfolio optimization 

of skewed asset returns. The Extended Merton model (EMM), generating skewed return distributions, demonstrates 

that (i) in skewed asset returns, the variance is not an adequate measure of risks and (ii) positive skewness in the 

asset returns comes together with a high default probability. Thus, the maximization of the mean portfolio returns 

and skewness with controlled variance used in mainstream papers can critically increase portfolio risks. We present 

the new settings of the optimal portfolio allocation problem leading to less risky efficient portfolios than the 

solutions suggested in all previous papers. 

Keywords: asset pricing, efficient portfolio allocation, skewed returns, default probability, Extended Merton model 

Introduction and EMM Description  

The seminal article (Merton, 1974) has determined the development of financial economics for a long 

period and continues its influence in many sectors of the financial theory. The article considers the dynamics of 

firm’s asset returns and applies the general theory to estimating the value of a zero-coupon bond. Strengthened 

with some important extents, Merton’s model (another name is the geometric Brownian model, GBM) has 

become very popular among the financial theorists investigating credit risk problems (e.g., Cox, Ross, & 

Rubinstein, 1979; Harrison & Pliska, 1981; Leland, 1994; Hugonnier, Malamud, & Morellec, 2015). Recently, 

an Extended Merton model (EMM) has appeared (Shemetov, 2020a) that sheds more light on the development 

of asset returns of the firm. EMM solves the general problem of asset returns by analyzing the firm dynamics 

with the effects of payments. The principal difference between GBM and EMM solutions is that GBM 

produces a normal distribution for the asset returns while EMM proves that the return distribution starting with 

the normal distribution becomes more and more skewed. Our goal is to expose typical errors in asset pricing 

models and solutions to the optimal portfolio allocation problem following from the prejudice that GBM 

produces reliable return distributions. To fulfill the program, we review the papers from these fields in the 

theory of investments and explain why these papers meet mixed success in their attempts to solve the problems. 

Section 1 includes the introduction and a short description of EMM, Section 2 considers typical papers on asset 
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pricing, Section 3 discusses the papers on the optimal portfolio allocation problem, Section 4 presents results of 

EMM modeling of the asset return distribution, and Section 5 concludes the paper. 

Here we briefly introduce the reader to EMM (Shemetov, 2020a; 2020b; 2021), which we extensively use 

in this paper. We consider asset returns in a logarithmic form 𝑥 = ln⁡(𝑅𝑋 𝑃0)⁄ , R is the rate of expected returns, 

X(t)—firm’s stochastic assets, P > 0—business securing expenses (BSEs), 𝑃 = 𝐹𝐶 + 𝐷𝑃 + 𝑇𝐴𝑋 + 𝐷𝐼𝑉, 

FC—fixed costs, DP—debt payments, TAX—taxes, DIV—dividends, all dollar per time unit; 𝑃(𝑡) = 𝑃0𝜋(𝑡), 

𝜋(𝑡)—a regular piecewise continuous function of time. For 𝑥 > 0, the assets grow, for 𝑥 < 0, they decline, 

x(t) = 0 is a line of unstable equilibrium. The return distribution 𝑉(𝑥, 𝑡) meets the equation (𝑉𝑦 is a partial 

derivative over variable y). 

𝑉𝑡 + 𝑅(1 − 𝜋(𝑡)𝑒−𝑥)𝑉𝑥 − 0.5𝐶2𝑉𝑥𝑥 + 𝑅𝜋(𝑡)𝑒−𝑥𝑉 = 0 (1) 

starting its evolution from a normal distribution (the initial condition): 

𝑉(𝑥, 0) = 𝑁(𝑥; 𝐻0, 𝜎0
2), 𝐻0 = 〈𝑥(0)〉 = 〈ln⁡[𝑅𝑋(0)/𝑃0]〉, 𝜎0

2 = 〈(𝑥(0) − 𝐻0)
2〉 (2) 

𝐶2 is the intensity of random market shocks. To solve the problem, one must add a boundary condition 

for the return distribution, reflecting the fact that when the firm’s assets intercept the boundary, the firm 

defaults: 

𝐷𝐿 = max⁡{ln⁡(𝑅𝑋𝐷 𝑃0), 0}⁄  (3) 

The line 𝐷𝐿 = ln⁡(𝑅𝑋𝐷 𝑃0)⁄  corresponds to the outstanding debt 𝑋𝐷 (the exogenous default line). The 

line 𝐷𝐿 = 0 serves as a soft default line (the endogenous default line) because when x < 0, business activities 

inflict losses to the firm. If the problem settings do not include the default line (see Merton, 1974; the marginal 

case when the firm’s assets are extremely large, tend to the infinity), the return distribution starting from the 

normal distribution remains normal, spreading with the rate C. In real cases with default line DL, the mean 

value will rise or go down depending on the difference RX - P, and the return distribution decreases with rate 

IDP(t), the intensity of default probability: 

𝐼𝐷𝑃(𝑡) = 2∫ 𝑉(𝑥, 𝑡)𝑑𝑥
𝐷𝐿(𝑡)

−∞

 (4) 

and default probability DPR(t) over the interval [0, t], t—the time of observation, is 

𝐷𝑃𝑅(𝑡) = ∫ 𝐼𝐷𝑃(𝜏)𝑑𝜏
𝑡

0

 (5) 

The rate of distribution leak through the boundary is proportional to the part of distribution V(x, t) below 

the default line. The loss of mass (Brownian particles constituting the distribution) at the default line induces 

redistribution of the remaining mass down to the default line. The distribution becomes negatively skewed. The 

cumulative effect of the diffusion spread and the distribution distortion makes the negative tail grow heavier 

over time increasing the default probability. See details in Shemetov (2020a). 

So, the negatively skewed distribution V(x, t) of asset returns is a natural effect of the firm dynamics. This 

fact makes void the calibrated models representing a combination of GBM with empirical default databases 

(e.g., Huang & Huang, 2003; Bohn, 2006). See a discussion of calibrated models below on the example of 

Moody’s KMV. EMM also constrains application of the jump-diffusion processes (e.g., Zhou, 2001; Hilberink 

& Rogers, 2002; Kou, 2002; Chen & Kou, 2009), which join a standard diffusion process with poorly 

motivated jumps down in asset returns. The objective of adding jumps to the diffusion is to raise the default 
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probabilities over the low values specific for GBM and make theoretical default probabilities comparable with 

the default frequencies observed in practice. 

The fact that asset returns are skewed is now well established in the optimal portfolio allocation theory and 

the asset pricing theory. However, the nature and driving forces of asset skewness remain still unknown to the 

economists and investors unfamiliar with EMM. The novel vision of the asset return development helps to 

improve the comprehension of some traditional problems of financial management. EMM used for analysis of 

the effects of firm leverage (debt) demonstrates that debt negatively affects the returns and survival of the firm. 

EMM reveals inconsistency in the debt study (Leland, 1994) that makes a basis for the tradeoff theory. This 

theory claims the existence of the optimal leverage maximizing the firm returns and strengthening its economic 

state. One can find a critical discussion of Leland (1994) and the tradeoff theory in Shemetov (2021). 

So far, EMM is the only model that can analyze the effects of inflation on the firm returns and survival 

(Shemetov, 2020b). It seems to be the very time to take account of the current inflation growing worldwide. 

EMM proves that moderate inflation acts positively on the firm’s returns and survival, while high inflation 

depresses the returns and decreases the firm chances for survival. The paper shows that the threshold separating 

moderate inflation from high inflation depends on the state of the firm: the same level of inflation can be mild 

for one firm and high for another. It means that there is no general recipe for the firm to deal with the effects of 

inflation; this reaction must be strictly individual. 

Because of the continuous leak of Brownian particles at the default line in EMM, the mean of the 

stochastic part of asset returns is always negative, and the stochastic returns never make a martingale. When the 

firm is far from default, the leak is low making an illusion that the asset returns are a martingale. If the firm 

comes closer to default, the leak grows noticeably, and asset returns cannot be assumed a martingale anymore. 

That is why the no-arbitrage principle is effective in the market of GBM firms (no leak at the default line) and 

ineffective in the market of EMM firms. So, all theoretical constructions admitting no-arbitraging have a 

limited domain of their validity and are not unconditionally correct. Inefficiency of the no-arbitraging principle 

in the market of the firms paying BSEs cancels the risk-neutral approach and risk-neutral probabilities (e.g., 

Cox et al., 1979; Harrison & Kreps, 1979; Harrison & Pliska, 1981) in the analysis of credit risks. 

In Markovitz’s mean-variance portfolio optimization, the investor maximizes the mean portfolio return, 

keeping the variance fixed. At that, the variance is considered a good measure of risk, which is true for 

symmetric distributions. Considering optimal portfolio allocation with higher moments (skewness, kurtosis), 

Kraus and Litzenberger (1976) recommend selecting positively skewed assets. So, the researchers looking for 

the efficient portfolio with higher moments maximize the portfolio mean return and skewness while keeping 

the variance fixed. We show in Section 4 that high positive skewness comes with a high default probability, and 

the unconditional maximization of skewness dangerously increases portfolio risks. We also show that for 

skewed asset returns, the variance is no adequate measure of asset risks and its minimization becomes useless. 

For skewed return distributions, the default probability, or the intensity of default probability, is the proper 

measure of asset risks. In the portfolio optimization with higher moments, one must solve the following 

problem: maximize the mean return and skewness while keeping the default probability under control. Such 

approach helps select both efficient and reliable portfolios with controllable risks. 

To compute the observable statistical moments of the return distribution like the mean return, variance, 

skewness, etc., one must consider the conditional return distribution including the firms with the same 
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prehistory and existing at the time of observation t. One can get this distribution 𝑉̂(𝑥, 𝑡) from distribution 

𝑉(𝑥, 𝑡) as 

𝑉̂(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑉(2𝐷𝐿 − 𝑥, 𝑡) (6) 

determined in the interval [DL, +∞) and having the property 𝑉̂(𝐷𝐿, 𝑡) = 0, 𝑡 ∈ [0,+∞). The moments of the 

return distribution 𝑉̂(𝑥, 𝑡) are 

𝐻̂(𝑡) = ∫ 𝑥𝑉̂(𝑥, 𝑡)𝑑𝑥
∞

𝐷𝐿
 , 𝑉𝑎𝑟̂(𝑡) = ∫ (𝑥 − 𝐻̂)2𝑉̂(𝑥, 𝑡)𝑑𝑥

∞

𝐷𝐿
 , 

𝑆𝐾̂(𝑡) = ∫ (𝑥 − 𝐻̂)3𝑉̂(𝑥, 𝑡)𝑑𝑥
∞

𝐷𝐿
 , 𝑀𝑋̂(𝑡) = (𝑃0/𝑅) ∫ 𝑒𝑥𝑉̂(𝑥, 𝑡)𝑑𝑥

∞

𝐷𝐿
 

(7) 

They are denoted in Section 4 as H_BP(t), VAR_BP(t), SK_BP(t), and MX_BP(t), correspondently (BP 

stands for “Boundary Problem”). The parameters governing the evolution of return distribution are: the distance 

to default 𝐻(𝑡) − 𝐷𝐿(𝑡), variance 𝜎2(𝑡), skewness SK(t), the intensity of market shocks C2, and the stochastic 

ratio 𝑅𝑋(𝑡)/𝑃(𝑡). One can add here a general economic motion influencing the firm development: a growing 

economy with higher rates of returns and lesser default risks and a declining economy with lower rates of 

returns and higher default risks. 

Reading the review below, one must remember that many authors imagine the return distribution as 

symmetric (normal or, more generally, elliptic functions). The statistical characteristics they operate with 

depend only on the mean and variance of returns. We know now that the distribution of asset returns is skewed 

and the mean and variance do not provide for exhaustive information on the firm. Therefore, all estimates 

presented in those papers are conditionally correct, as far as the return distribution remains almost symmetric 

(GBM). 

We do not plan to present a comprehensive review of numerous attempts to solve the problems of asset 

pricing or portfolio optimization. Our objective is much humbler: to show the dramatism of the scientific search 

for a better CAPM and optimal portfolio allocation and give some new evidence casting more light on these 

problems. We hope that this information will be helpful in the nearest future. 

Asset Pricing Problem 

Portfolio optimization is most important for the theory and practice of investments. Being in the center of 

the vivid discussion since 1952, when Markowitz has published his seminal mean-variance analysis of efficient 

portfolios, this theory is still far from its satisfactory resolution despite all progress achieved in this area. The 

Capital Asset Pricing Model, CAPM (Sharpe, 1964; Lintner, 1965; Mossin, 1966), developing Markowitz’s 

ideas, relates the expected portfolio return 𝐸(𝑟𝑝) with the expected market return 𝐸(𝑟𝑀) and beta: 

𝐸(𝑟𝑝) = 𝑟𝑓 + 𝛽𝑝[𝐸(𝑟𝑀) − 𝑟𝑓] , 𝛽𝑝 = 𝑐𝑜𝑣(𝑟𝑝, 𝑟𝑀)/𝑣𝑎𝑟(𝑟𝑀) (8) 

here 𝑟𝑓 is a return on a risk-free asset. CAPM uses two basic assumptions (i) asset returns are normally 

distributed or (ii) investors have a quadratic utility function. Notwithstanding these rigid limitations, 

practitioners widely use CAPM for asset allocation because it provides an intuitively clear assessment of the 

relative merits of alternative portfolios. Moreover, one can span CAPM mean-variance frontiers with only two 

funds, which makes it easy to calculate and interpret these frontiers. Financial theorists (Merton, 1974; Leland, 

1994; and many others) use CAPM in their analysis because it is consistent with GBM, which now dominates 

the other methods in credit risk analysis. Sentana (2009) gives a comprehensive survey on the mean-variance 
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efficiency tests. We demonstrate below that using old good Markowitz’s portfolio allocation is less dangerous 

for the investors than following recommendations of the unripe mean-variance-skew portfolio allocation 

theories published before the summer of 2022. 

Empirical and theoretical studies show that both asset and portfolio returns are not normally distributed. 

Brown and Matysiak (2000) show that the return distribution has heavier tails than one can expect for a normal 

distribution. Simkowitz and Beedies (1980), Singleton and Wingender (1986), Badrinath and Chatterjee (1988), 

and Harvey and Siddique (2000) present empirical evidence of skewness in individual stock returns as well as 

market indexes in the US stock markets. Shemetov (2020a; 2020b; 2021) demonstrates that an initially normal 

distribution of asset returns becomes skewed over time. 

Theoretical studies of Kraus and Litzenberger (1976) start exploring the role of skewness in the behavior 

of asset returns. They suppose that the utility function is not quadratic but admits the third moment (skewness) 

characterizing the return distribution asymmetry. The authors argue that investors will value the positive 

skewness. When two assets have the same expected returns and variances, the investors consider these two 

assets equivalent unless they know the asset skewness values. The authors insist that in this case, the 

wealth-maximizing investors will prefer the asset with the highest possible skewness increasing their returns 

the most. Kraus and Litzenberger (1976) consider one desirable side of the optimal portfolio (its high returns) 

and pay no attention to another important side of the optimal portfolio, its stability. As we show in Section 4, 

their recommendation to choose assets with the highest possible skewness leads to uncontrollable growth of 

portfolio risks threatening the investor with sudden losses. Kraus and Litzenberger (1976) start the stream of 

portfolio optimization studies developing the mean-variance-skewness analysis (the MVS analysis). Some 

researchers (e.g., Fang & Lai, 1997; Dittmar, 2002; Jondeau & Rockinger, 2003; Krueger, 2021) go further and 

include the fourth moment (kurtosis) in their MVSK analysis, but there are a lot of vague moments even in the 

MVS analysis. 

We distinguish three streams in the literature considering the asset pricing and portfolio optimization 

problems. (i) The papers using heuristic/fundamental variables instead of or together with the beta to predict 

expected asset returns. (ii) The MVS investigations where the skewness of asset returns appears through 

proxies. (iii) The studies modeling asymmetry of the return distribution with jump-diffusion processes or 

special (skew-elliptic) functions that help solve the portfolio optimization problem in closed form. Many of 

these studies use regression analysis of selected variables on the expected asset returns. Their logic is like this. 

To solve the optimal portfolio problem, investors must have an asset pricing model relating portfolio payoffs 

with market factors. Economists see this model as a linear valuation functional that assigns prices to market 

factors (Hansen & Jagannathan, 1997). Because the asset pricing model is unknown and market factors are 

often unobservable, economists have to construct approximating models using empirical proxies for the 

theoretical market factors. As a result, empirical models deviate from the objective asset pricing models due to 

possible misspecification. To find the best among the available empirical models, one must know how to 

compare the competing models. Shanken (1987) and Hansen and Jagannathan (1997) suggest solutions to this 

problem by proposing the measures of model misspecification that are widely used for parameter estimation, 

specification testing, and comparison of the competing empirical models. 

We now introduce some factors that appear in many asset-pricing models. The firm size and 

book-to-market ratio are among such factors. According to EMM, a small firm has characteristics: low mean 
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assets and, therefore, a short distance to default. A probable lack of management skills increases the variance of 

returns to higher values. These circumstances make the negative tail of the return distribution grow fast (high 

skewness), threatening the firm with soon default (high default risks). To survive, the firm takes riskier projects 

(high C), promising higher expected rates of return, R. Some small firms succeed in such projects, increasing 

their distance to default and achieving the state of a medium-sized firm. Struggling for survival and success, 

these small firms show returns higher than large firms. At that, the variance of returns of a small firm is not 

much greater than that of a large firm because, for asymmetric distributions, the variance is a not-so-good 

measure of the default risk, as it is for symmetric distributions. But many small firms default, failing to bring 

their risky projects to success. It explains the high mortality of small firms. In contrast, a large firm has high 

mean assets, a long distance to default, and a low default probability, all other parameters equal. Such firms, as 

a rule, value their stability and avoid risky projects preferring to have a moderate but steady rate of average 

returns. Summarizing: the small firm has higher skewness and a greater default risk than a large firm (all other 

parameters equal). However, the skewness and default risk are not one-to-one functions of the firm size; 

researchers must use this variable cautiously (see Section 4). A high book-to-market ratio of the firm means that 

the market estimates its perspectives skeptically, and its income and dividends are low. It can happen to a firm 

with a short distance to default that suffers financial distress or slowly recovers from it. In both cases, the return 

distribution is noticeably skewed, threatening the firm with likely default. A low book-to-market value means 

that the market estimates the firm default probability as insignificant and its business prospects favorable. 

Again, the skewness and default risk are not one-to-one functions of the book-to-market ratio. 

Concerning the “fundamental” variables (e.g., Daniel & Titman, 1997; Shapovalova, Subbotin, & 

Chauveau, 2011; Harvey, Liu, & Zhu, 2016), one can see that they are not among the parameters and variables 

governing the evolution of the return distribution. The fundamental variables, heuristic by their nature, come 

from the stock exchange, accounting, and other practices and have a distant relationship to the development of 

return distribution. All said above about the size and book-to-market ratio concerns these variables too. 

All papers with fundamental variables use regression models to explain the excess returns by a set of 

factors that can be the company fundamentals directly, or the sensitives of each stock to systematic risk factors, 

usually denoted as “betas”. The latter case represents the settings of the classic asset-pricing models such as 

CAPM or the three-factor model of Fama and French (1993), hereafter FF3. Shapovalova et al. (2011) present a 

general regression model in the form: 

𝑟𝑖,𝑡 − 𝑟𝑡
𝑓
= 𝑐𝑡 +∑𝛾𝑡

𝑗
𝜃𝑖,𝑡
𝑗

𝐾

𝑗=1

+𝜔𝑖,𝑡 (9) 

Here 𝑟𝑖,𝑡 is the total return (the capital gain plus dividend yield) on stock 𝑖, 𝑖 ∈ (1,2,… , 𝑁), over period 𝑡, 

𝑡 ∈ (1,2,… , 𝑇); 𝑟𝑡
𝑓

 is the risk-free rate of returns over the period 𝑡, 𝜃𝑖,𝑡
𝑗

 is the value of factor 𝑗, 𝑗 ∈

(1,2,… , 𝐾), of company 𝑖 at time t, and 𝛾𝑡
𝑗
 is the return premium associated with a unitary increase in the 

value of factor j in period t. The term 𝜔𝑖,𝑡 includes constant 𝜔̅, time-effect term 𝜔𝑡, and an error: 

𝜔𝑖,𝑡 = 𝜔̅ + 𝜔𝑡 + 𝜔̃𝑖,𝑡 (10) 

the error 𝜔̃𝑖,𝑡 is assumed to be a Gaussian zero-mean noise, iid. Shapovalova et al. (2011) make a step forward, 

taking account of the dynamic structure of the return premium in the form of the autoregressive random 

coefficient model: 
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𝛾𝑡
𝑗
= 𝑐𝑗 + 𝛼𝑗𝛾𝑡−1

𝑗
+ 𝜀𝑡

𝑗
 (11) 

Here 𝑐𝑗 and 𝛼𝑗 are coefficients, 𝜀𝑡
𝑗
 is an error term. Choosing values for 𝛼𝑗, |𝛼𝑗| ≤ 1, one can post factum 

adjust the dynamic structure of the model to the dynamic structure of the return premium observed in practice. 

The regression approach to a process of unknown nature (e.g., the evolution of the return distribution, 

default risks, etc.) could hardly be efficient when researchers have to make a scientific guess about the 

explaining variables of the process under study. It is well known that regression cannot give any positive proof. 

It can only say that there are two or more concurrent processes, but it cannot reveal the cause-effect 

relationships between them or determine the space and time limits of those concurrencies. A vague vision of the 

asset return distribution and the excessive flexibility of proxies used in the models explain the mixed success of 

the results reported in literature and the absence of the best model. The researchers use the regression approach 

in their studies of asset pricing models because of a lack of more direct and efficient methods of attacking the 

problem. It does not mean that one must stop the regression studies, but support from other approaches to the 

problem could be helpful. 

Now we return to reviewing papers from the first stream of literature. The firm size is the first heuristic 

factor introduced in CAPM by Banz (1981) to explain asset returns. Banz has noticed that smaller NYSE firms 

have, in general, higher returns for the same level of the beta than larger firms, and the more the difference in 

capitalization of the firms, the more the difference in returns. This relation suggests that the firm size 

(understood as a market value of the firm equal to the stock price times the number of outstanding stocks) 

captures some dimension of risk missed by the beta in CAPM. It makes the size factor a good candidate for an 

explaining variable in the asset pricing model. Another factor determining the cross-sectional variation of asset 

returns is the book-to-market ratio. Stattman (1980) and Rosenberg, Reid, and Lanstein (1985) are the first to 

report the book-to-market effect on the US stock market. Basu (1983) suggests the earning-to-price ratio of a 

stock as a new variable explaining asset returns, and Bhandari (1988) documents the effect of debt leverage on 

returns of common stocks. Fama and French (1992) claim that the size and book-to-market ratio have more 

predictive power on stock returns than the variables suggested by Basu and Bhandari. Fama and French (1993) 

include the size, book-to-market ratio, and beta as the determinants of the expected returns in their famous FF3. 

The papers (Fama & French, 1992; 1993) start the intensive search for a new, more precise CAPM. Fama and 

French (2004) put it as “the synthesis of evidence on empirical problems on the CAPM provided by (Fama & 

French, 1992) serves as a catalyst, marking the point when it is generally acknowledged that the CAPM has 

potentially fatal problems” (p. 36). 

FF3 (Fama & French, 1993; 1996), following the above formalism, can be presented as 

𝑟𝑖,𝑡 − 𝑟𝑡
𝑓
= 𝛾𝑡

𝑀𝛽𝑖,𝑡
𝑀 + 𝛾𝑡

𝑆𝑀𝐵𝛽𝑖,𝑡
𝑆𝑀𝐵 + 𝛾𝑡

𝐻𝑀𝐿𝛽𝑖,𝑡
𝐻𝑀𝐿 +𝜔𝑖,𝑡 (12) 

The factor SMB is the difference between the returns on diversified portfolios of small and big stocks. The 

factor HML is the difference between the returns on diversified portfolios of high and low book-to-market 

stocks. One can find the loadings 𝛽𝑖,𝑡
𝑀, 𝛽𝑖,𝑡

𝑆𝑀𝐵, and 𝛽𝑖,𝑡
𝐻𝑀𝐿, by measuring the sensitivity of asset returns to the 

three factors from N time-series regressions for each stock (N is the number of stocks). The general opinion is 

that FF3 has more explanatory power than CAPM, especially in international and emerging markets (e.g., Drew 

& Veeraraghavan, 2002; Eraslan, 2013; Durga, 2020). However, this literature shows that the predictive power 

of SMB and HML on expected returns is unstable, varying significantly over time intervals and markets. FF3 
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has received much popularity among the economists, and many authors, who propose new methods for asset 

pricing, start with FF3. The discussion of FF3 continues till now (e.g., Allen & McAleer, 2018; Fama & French, 

2018), revealing more and more difficulties in this model. 

Daniel and Titman (1997) argue that firm characteristics rather than factor loadings on the SMB and HML 

portfolios determine the expected returns. They suggest an alternative stock characteristics model: 

𝑟𝑖,𝑡 − 𝑟𝑡
𝑓
= 𝛾𝑡

𝑀𝛽𝑖,𝑡
𝑀 + 𝛾𝑡

𝐵𝑡𝑃𝐵𝑡𝑃𝑖,𝑡−𝑙 + 𝛾𝑡
𝑀𝐶𝐴𝑃𝑀𝐶𝐴𝑃𝑖,𝑡−𝑙 +𝜔𝑖,𝑡 (13) 

Here 𝛾𝑡
𝐵𝑡𝑃  and 𝛾𝑡

𝑀𝐾𝐴𝑃  are the return premia generated by the firm’s characteristics 𝐵𝑡𝑃𝑖,𝑡−𝑙  and 

𝑀𝐾𝐴𝑃𝑖,𝑡−𝑙  taken with a three-month lag denoted as l (BtP = Book-to-(Market)Price, MCAP (Market 

Capitalization = Size). Developing the method of firm characteristics, Shapovalova et al. (2011) explore the 

impact of the firm fundamentals on stock returns. Their list of accounting fundamental characteristics includes 

PtB = (Market) Price to Book ratio, fPtE = Projected Price to Earnings, PtE = Price to Earnings, PtS = Price to 

Sales, PtCF = Price to Cash Flow, DY = Dividend Yield, fgEpS = Projected Growth of Earnings per Share, 

gEpS = Growth of Earnings per Share, gSpS = Growth of Sales per Share, fgSpS = Projected Growth of Sales 

per Share, IG = Internal Growth, MCAP = Market Capitalization. 

Shapovalova et al. (2011) select some fundamental variables used in the style analysis and business 

practice. These variables are the book-to-price ratio, market capitalization, sales growth, and internal growth. 

The authors confirm that style premia are time-varying, but their dynamic structure has occurred more 

complicated than the developed methodology can reveal. The authors claim that the reliability of their forecasts 

is on the level of results of Fama and French (1993; 1996), Daniel and Titman (1997), and other models using 

the unconditional approach. 

Harvey et al. (2016) present a more detailed list of factors and models for cross-sectional anomalies in 

expected returns. The authors count hundreds of empirical models, distinguishing from one another with 

proxies for unobservable market factors. The authors have documented about 300 such proxies, and their 

number continues to grow. To find a better model in a huge set of available models, one must have an ordering 

parameter and a procedure for comparing competing empirical models. Shanken (1987) and Hansen and 

Jagannathan (1997) propose the measures of model misspecification. However, the intensive use of these 

measures has failed to separate the promising asset-pricing models. Gospodinov et al. (2013) argue that despite 

the econometric theory for comparing the empirical models based on the Hansen-Jagannathan distances 

(hereafter the HJ-distances), a general statistical procedure for model selection is still incomplete. Gospodinov 

et al. (2013) propose the methodology based on the pivotal Chi-squared versions of the model comparison tests 

that are easier to implement and analyze than their counterparts used in previous studies. 

Nevertheless, it does not bring a decisive success. To explain this, Harvey et al. (2016) argue that using 

usual statistical significance cutoffs (e.g., t-ratio exceeding 2.0) in empirical tests is incorrect. Given the 

plethora of factors and the inevitable data mining, many historically discovered factors would be deemed 

“significant” by chance due to the rule of big numbers. To improve the situation, the authors propose three 

conventional multiple-testing frameworks and a new one that especially suits financial economics. While these 

frameworks differ in their assumptions, they are consistent in their conclusions. Harvey and his coauthors argue 

that a newly discovered factor to be accepted should have a t-ratio that exceeds 3.0. The main shortcoming of 

the analysis by Harvey et al. (2016) is their unconditional approach. Understanding its restrictions, the authors 

admit: “It is possible that a particular factor is very important in certain economic environments and not 
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important in other economic environments. The unconditional test might conclude the factor is marginal” 

(Harvey et al., 2016, p. 7) When characteristics describing the asset depend on time, the unconditional models 

and tests can never be correct. 

In our opinion, the failure of tests with HJ-distances used to select promising empirical models for asset 

pricing is due to the construction of the HJ-distances. They are derived using elliptic (symmetric) functions for 

the return distributions. (The main adventure of the elliptic distributions in this context is that they generalize 

the multivariate normal distribution and retain its analytical tractability irrespective of the number of assets.) 

The economic environment is assumed to be arbitrage-free. As a result, the return distributions remain 

symmetric, and the first and second moments determine the structure of both constrained and unconstrained 

HJ-distances (Gospodinov et al. 2012). Mark that the distribution returns used by Hansen and Jagannathan 

(1997) and Gospodinov et al. (2012; 2013; 2014) are the market return distributions having a more complicated 

structure than the return distribution of the firm. 

Investors need to know the return distribution of each firm they plan to invest in: it gives them the mean 

returns on assets, variances and other statistical moments, and the default probability; this information helps 

investors optimize their portfolios. However, the investors do not know the return distribution of the firm; all 

they observe is the stochastic market returns. The investors can vaguely guess the return distribution of the firm 

by analyzing the time series of market outcomes. The market return consists of three parts: the dividends paid 

for a time unit, the change in the firm value for the same period, and the premium paid for the right of 

possessing that stock. The return distribution of the firm completely determines the first two terms. The 

eagerness of investors to have a particular stock in their portfolio affects the value of the last term. Two 

opposite tendencies govern this eagerness: the striving for wealth-maximizing on the one side and risk-avoiding 

on the other. These tendencies interfere with decision-making on the stock selection to the investor’s portfolio, 

making the market return distribution different from the return distribution of the firm. The wealth-maximizing 

and risk-avoiding tendencies do not remain constant; one or the other behavior prevails at particular periods 

depending on the state of the stock and market. This subjective behavior of individual investors introduces 

additional stochastic shocks in the dynamics of market returns. The cumulative effect of all investors working 

with a particular stock at the stock exchange determines the market return distribution of this asset. Considering 

the structure and dynamics of market returns, it becomes clear that the market return distribution of any stock 

can hardly be symmetric. 

Properties of the functions making the economic space of the firms paying BSEs are very different from 

that of the functions making the Hansen-Jagannathan space (the HJ space, Hansen & Jagannathan, 1997). 

Violation of the no-arbitrage principle in the HJ space happens due to misspecifications of empirical models. 

No-arbitraging in the space of firms paying BSEs can occur just as a rare random event. Therefore, the 

measures of these two spaces are different, and minimization of the HJ-distance between two empirical models 

with symmetric return distributions does not provide for the shortest distance between the models in the space 

of firms paying BSEs. This argument can explain the failure of attempts to select promising empirical models 

by minimizing the HJ-distance between the models. 

CAPM and FF3 are static linear models with constant coefficients (betas). However, the economy 

permanently changes, experiencing boosts and recessions, and the firms have their business cycles, risk 

fluctuations, etc. Conditional asset-pricing models take account of this variability, making the expected returns 

depend on the information known to investors at a fixed moment. Jagannathan and Wang (1996) present the 
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first conditional asset-pricing model. This model looks a bit naive compared to the sophisticated approach to 

the conditional models suggested by Hansen and Jagannathan (1997). Using 100 size-beta sorted portfolios of 

stocks from NYSE and AMEX between 1962 and 1990, Jagannathan and Wang claim that their conditional 

asset-pricing model can explain about 30% of the cross-sectional variations while static CAPM can explain 

about 1%. Another original contribution of this model to the asset-pricing theory is human capital used as a 

proxy for the market portfolio. The authors explain their choice by the high relative weight of the human capital 

in the economy. 

The conditional approach to the asset-pricing modeling suggested by Hansen and Jagannathan (1997) and 

further developed by Gospodinov et al. (2012; 2013; 2014) presents a mature treatment of the asset pricing in 

time-varying conditions. See above the discussion on constructing this type of empirical asset-pricing models 

for the symmetric return distributions based on the HJ-distances. 

Lettau and Ludvigson (2001) suggest a conditional consumption-based asset pricing model (a conditional 

consumption CAPM, or CCAPM). They start with recognizing the fact that expected returns are time-varying 

due to the changing economic environment. They look for the CCAPM as a linear function of fundamental 

variables with coefficients depending on time. In that model, the expected asset return is a function of its 

conditional covariance with a particular factor normalized by the conditional variance of this factor. To find the 

conditional variance and covariance, the authors model the dependence of parameters on time by scaling factors. 

Their scaling method is close to the method presented by Jagannathan and Wang (1996), who show that the 

performance of the asset-pricing model can be noticeably improved by conditioning the market factor on the 

default premium. Lettau and Ludvigson use another scaling factor, named cay, which is the difference between 

log consumption (c), the weighted average of log-asset wealth (a), and log-labor income (y). The authors argue 

that movements in cay are a good proxy for movements in the consumption-aggregate wealth ratio. They claim 

that the scaled multifactor version of conditional CCAPM performs well in explaining the cross-section of 

average returns: it explains nearly 70% of the cross-sectional variation in expected returns, about as well as 

FF3. 

Conditional asset pricing models represent a new important step in the theory of asset pricing: the 

recognition of the effect of changes in the economic environment and their influence on asset pricing. Hansen 

and Jagannathan (1997) give a theoretical proof of the necessity to consider the time dependence of asset 

returns. Unfortunately, the first attempts to take account of the economic dynamics through scaling are not very 

successful: the models use not-so-good proxies for reflecting the time dependence of asset returns, and the 

heuristic method of scaling seems doubtful. The weaknesses of the conditional asset pricing models leave an 

open door for just criticism. However, the article (Lewellen & Nagel, 2006) rejects the very right of existence 

for the conditional models. Of course, discussing the weaknesses of conditional models, the authors refer to the 

existing models (Jagannathan & Wang, 1996; Lettau & Ludvigson, 2001; etc.), but they jump to the negative 

conclusion about all conditional models. The authors claim that they present an empirical proof that the 

conditional models cannot explain asset-pricing anomalies. They directly estimate the conditional coefficients 

using short-window regressions (a five-day window). “As long as betas are relatively stable within a month or 

quarter, then simple CAPM regressions estimated over a short window—using no conditioning 

variables—provide direct estimates of the conditional alphas and betas” (Lewellen & Nagel, 2006, p. 291). 

Rather than performing regression once, using the full-time series of returns, they estimate it separately every 

quarter using daily or weekly returns. The inevitable consequence of this approach is a significant increase in 
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the number of regressions and corresponding errors. These errors drastically decrease the precision and 

accuracy of their pricing model. The authors try to verify low-quality conditional models with another 

low-quality model. That fruitless attempt makes the claim of Lewellen and Nigel on providing for an empirical 

proof that the conditional CAPMs do not explain the asset pricing anomalies unsubstantial and false. 

Vassalou and Xing (2004) present another revision of FF3, analyzing the relationships between the size, 

book-to-market ratio, and the default probability. The authors try to estimate the default probability using the 

calibrated model of Moody’s KMV (Bohn, 2006); they call their estimate the default likelihood indicator, DLI. 

Moody’s KMV suffers dramatic drawbacks, producing very rough and misleading estimates of the firm default 

probability. First, to construct the key characteristic of Moody’s KMV, the distance-to-default (DD), measuring 

the distance between the mean log-value of the firm and a specially selected default line, the authors start  

with the option pricing formula for the market value of the firm. Merton derives this formula to estimate the 

value of a zero-coupon bond; it does not fit the case of the equity value. Second, this formula is based on the 

assumption that the firm can default only at the maturity of its debt, while the firm can theoretically default at 

any time. Third, the authors assume that the firm makes no payments, and its log-value distribution remains 

normal, while this distribution is really skewed. Forth, it is assumed that DD uniquely determines the default risk. 

Using DD calculated for the normal distribution of the firm log-value and the default database, the model 

computes a share of firms with that DD that have defaulted within a year. This share has Moody’s trademark 

name of Expected Default Frequency (EDF) and is a rough estimate of the default probability at a distance of one 

year. It is easy to understand that the assumption that EDF is a function of DD only is far from reality. Two firms 

with equal DDs at one moment can have different default probabilities because the firm distribution depends on 

the parameters of the firm and its business environment (the debt leverage, interest rate, inflation rate, taxation rate, 

etc.). The listed drawbacks are not specific for Moody’s KMV; they are immanent to all calibrated models using 

GBM. 

The drawbacks of Moody’s KMV make it hardly advisable for estimating the default probability of an 

individual firm. However, one can apply this method to qualitative analysis of the cumulative market effects. 

To measure these effects, Vassalou and Xing introduce the aggregate default likelihood measure (ADLM), 

defined as a mean DLI over all firms in the market, and the aggregate survival rate, ASR = 1 - ADLM. The 

authors study the relations between the size, book-to-market ratio, and default risk. Constructing and testing a 

regression model with these variables, they conclude that the size effect exists only within the market segment 

that contains the stocks with the highest default risk. The authors suppose that the high mean returns of small 

stocks compared to the rest of the market are the compensation for the high default risk they take. Considering 

the book-to-market effect, Vassalou and Xing document that this effect is significant only in the quintiles with 

high default risks. They also register a monotonic relation between default risk and the book-to-market factor in 

these quintiles. This relation is not monotonic in other quintiles with lower default risks. (See our commentary 

on the size and book-to-market factors in Section 4). Discussing the effect of default probability, the authors 

believe that the default risk is priced and must be included in asset pricing models. They explain the higher 

returns of small firms as a compensation for their higher default risk compared to the risk of big firms. Section 

4 shows that the higher the default probability, the lesser the returns, the greater the losses. The default risk 

cannot be a priced variable making a benign effect on asset returns. Another objection against the default risk 

as an explaining variable in the asset-pricing model is the inability of the authors to compute a reliable value of 

the default risk in their model. 
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From the discussion above, it is clear that attempts to construct a new CAPM by guessing the variables 

that improve a predictive power of the single-factor CAPM are not productive. A more systematic approach 

using information about the return distribution of the firm could be more helpful. Second, wrong ideas about 

the symmetry of return distribution impede the development of efficient asset pricing models. Knowledge of 

the skewed return distribution provided by EMM can lead the scientific search to more perspective methods of 

solving the problem. We show in Section 4 that the variance is, in general, a poor measure of the default risk 

for skewed return distributions. It means that the perspective asset pricing model with higher moments will not 

include Sharpe’s beta as an explaining variable. 

Now we consider the stream of the mean-variance-skewness investigations. Harvey and Siddique (2000) 

examine the linkage between the factors in asset-pricing models and systematic co-skewness. In the 

single-factor model, investors estimate the security by its mean return and variance. However, the return 

distribution in the market demonstrates some skewness. Everything else being equal, investors prefer 

right-skewed portfolios to left-skewed ones because the right-skewed portfolios promise them higher returns 

(Kraus & Litzenberger, 1976). The authors assume that portfolio skewness is a consequence of the limited 

liability in all equity investments that may induce option-like asymmetry in returns. Another cause of portfolio 

skewness suggested by Harvey and Siddique (2000) is that the managers prefer portfolios with high positive 

skewness. The authors test a three-moment conditional asset-pricing model to see if the stocks with big 

negative co-skewness with the market will earn higher risk premia. (See our comment on the sign of 

co-skewness in the discussion of results by Barone-Adesi et al. (2004).) They use the size and book-to-market 

factors as proxies for the co-skewness factor because direct co-skewness estimating is difficult. Harvey and 

Siddique (2000) document that skewness varies among portfolios of different sizes and book-to-market levels. 

The authors find skewness very helpful in explaining the cross-sectional variations of equity returns. They also 

show that the momentum effect (Jegadeesh & Titman, 1993) is related to systematic portfolio skewness. 

Longin and Solnik (2001) study the conditional correlation structure of international equity returns using a 

statistical method based on the extreme value theory. Their method tests whether these correlations deviate 

from what one would expect under multivariate normality. They show that high volatility with high absolute 

returns does not lead to an increase in conditional correlation. It is only during market downturns (the bear 

markets) that conditional correlation strongly increases; conditional correlation does not seem to grow during 

market upturns (the bull markets). This result makes another empirical proof that the fear of losing wealth is a 

much stronger emotion for investors than their striving to increase wealth. 

Patton (2004) considers the effects of two types of asymmetries in the joint distribution of stock returns on 

asset allocation and portfolio optimization. The first type is skewness in the distribution of individual stock 

returns (e.g., Kraus & Litzenberger, 1976; Friend & Westerfield, 1980; Singleton & Winberger, 1986; 

Richardson & Smith, 1993; Harvey & Siddique, 2000). The second asymmetry concerns a higher correlation of 

stock returns during market downturns than during market upturns (Erb et al.,1994; Longin & Solnik, 2001; 

Ang & Chen, 2002; Bae et al., 2003). The author examines the problem of an investor with a constant relative 

risk aversion (CRRA) allocating wealth between the risk-free asset, the small- and large-cap indices comprised 

of the first and tenth deciles of the US stocks sorted by market capitalization. Using the copula technique and 

CRRA utility function, Patton (2004) demonstrates that skewness in individual stock returns and the 

asymmetric correlation of stock returns in market downturns induce the negative skewness in the distribution of 

portfolio returns. (EMM modeling and empirical observations show that portfolio returns can have both 
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negative and positive skewness.) Patton documents evidence that the model capturing skewness and 

asymmetric correlation dependence yields better portfolio decisions than the bivariate normal model. The 

difference in returns of the most flexible density model and the bivariate normal model makes between 0 and 

27 basis points per year. 

Barone-Adesi et al. (2004) consider market co-skewness and investigate its role in testing the asset pricing 

models. They start with constructing a quadratic model of the mean excessive returns; the model includes the 

market returns and the square of market returns as the two factors. Following Harvey and Siddique (2000), they 

define an asset as having positive co-skewness with the market when the residuals of regression on a constant 

and the market return positively correlate with the squared market return. With this definition, an asset with 

positive (negative) co-skewness reduces (increases) the portfolio risk to high market returns and commands 

lower (higher) expected returns in equilibrium. They find that small firms have negative co-skewness while 

large firms have positive co-skewness. It is worth noting that this definition of the positive/negative 

co-skewness is opposite to the generally accepted definition of skewness as the third statistical moment of the 

asset return distribution. Of course, co-skewness and skewness of returns have different numeric values, but 

they must have the same sign. According to EMM, small and large firms may have both negative and positive 

skewness in their returns, but small firms have more often positively skewed returns, while large firms have 

mostly negatively skewed returns. 

Besides evaluating asset pricing models with co-skewness, Barone-Adesi et al. (2004) investigate the 

consequences of asset pricing tests without co-skewness. The authors empirically prove that some portfolio 

characteristics, such as the firm size, explain expected excess returns (e.g., Banz, 1981; Fama & French, 1992). 

If the market co-skewness correlates with the size, it has spurious explanatory power for the cross-section of 

expected returns because the size factor proxies for omitted co-skewness. The authors empirically prove that 

co-skewness and the size factor are correlated. This finding suggests that the empirically observed relationship 

between the size and the returns may be explained by such a systematic risk factor as market co-skewness; see 

also Harvey and Siddique (2000, p. 1281). 

Jondeau and Rokinger (2006) address the problem of how the non-normality of asset returns impacts the 

allocation of wealth for utility-maximizing investors. Using a Taylor series expansion, they approximate the 

utility as a function of three or four moments and compute the optimal portfolio allocation. For optimization, 

the authors use a distance measure between portfolio weights and estimate the opportunity cost of a sub-optimal 

strategy. Jondeau and Rokinger (2006) document that when the returns show slight deviation from normality, 

different allocation strategies provide almost the same allocation, suggesting that the mean-variance method 

correctly approximates the expected utility. When the return distribution severely deviates from normality, the 

extension to the three- or four-moment criterion results in much better approximation of the expected utility 

than the mean-variance criterion. The goodness of approximation is highlighted by the opportunity cost which 

is very small in all instances for the four-moment criterion. In conclusion, Jondeau and Rokinger (2006) remark 

that for further development of conditional asset allocation, one must have a model for returns “with an 

asymmetry and fat tails”. EMM is the very model. 

Portfolio Optimization 

Portfolio selection with higher moments has received considerable attention and provided many good 

results in the last forty years. The seminal paper (Kraus & Litzenberger, 1976) marks the beginning of 
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systematic work on portfolio allocation and asset pricing with higher moments. The authors develop the asset 

pricing model in which the expected asset return is a linear function of the Sharp beta and co-skewness of the 

asset with the market portfolio. This result follows from the assumption that the utility of portfolio return is a 

function of the portfolio expected value, variance, and skewness. Following the logic of Kraus and Litzenberger 

(1976), portfolio allocation as a result of the tradeoff between risk aversion and maximization of the expected 

return by choosing higher skewness requires the specification of a suitable utility function U(Xp) and 

computation of its expected value. To perform this, one must determine the distribution of the portfolio return. 

Without it, the researchers look for a suitable multivariate distribution of asset returns for deriving the required 

distribution for the portfolio return. 

Athayde and Flores (2004) are the first who consider the problem of choosing an efficient portfolio by 

taking account of three moments of the asset return distribution: the mean, variance, and skewness. Setting 

aside the problem of determining the asset moments and assuming that the moments are known precisely, they 

study a portfolio consisting of n risky assets plus one riskless asset and derive a formula for the solution surface. 

They document the geometric properties of the efficient surface in the space of three moments. The authors 

obtain a shape of the mean-variance-skewness efficient frontier for some examples using a simulation 

technique. Athayde and Flores (2004) show that the mean-variance solution of Markowitz can be most 

inefficient when the asset skewness is significant. 

The authors, sharing common vision of the skewness role, believe that the optimal solution includes the 

unconstrained maximization of portfolio skewness. However, high positive skewness comes together with a 

high default probability (see Section 4); it makes the “optimal” portfolio profitable but highly unstable. To 

improve the situation, one must look for the maximum of the mean portfolio return and skewness under the 

constraint that the default probability of each asset to be included in the portfolio remains below an agreed 

threshold DPTr. After that, one must continuously check and recheck the mean returns and default probabilities 

of assets keeping the portfolio returns and risks under control. Of course, the authors cannot find the default 

probability of each asset in their problem settings, and EMM could be of great assistance in this case. 

It is worthy to emphasize that in the higher-moment problem, the variance is not a variable uniquely 

related to the default probability of an asset as it is in the mean-variance portfolio optimization, when the return 

distribution follows GBM and is symmetric. Therefore, one must change the mean-variance optimization of 

Markowitz for another problem of maximizing the mean return and skewness, given the default probability (or the 

intensity of default probability) is no more than an agreed value. The default probability is a crucial characteristic 

of any asset or portfolio irreducible to any statistical moment or a combination of statistical moments. 

Krueger (2021) considers the problem of portfolio optimization using a nonparametric method of the data 

envelopment analysis (e.g., Morey & Morey, 1999; Edirisinghe & Zhang, 2007) in the interpretation of Briec 

and Kerstens who suggest a mean-variance-skewness analysis of portfolio optimization (e.g., Briec et al., 2004; 

Briec et al., 2007; Briec & Kerstens, 2010). Following the ideas of Jondeau and Rokinger (2006), the author 

relates higher moments of the return distribution with the utility of the investor holding a particular portfolio of 

assets. Realizing portfolio optimization, he starts with a nonparametric calculation of statistical moments by 

averaging asset returns over time: 

𝑚̂𝑖 = 𝑇−1∑ 𝑅𝑖𝑡
𝑇
𝑡=1  , 𝑣𝑖𝑗 = 𝑇−1∑ 𝑟𝑖𝑡𝑟𝑗𝑡

𝑇
𝑡=1  , 𝑠̂𝑖,𝑛(𝑗−1)+ℎ = 𝑇−1∑ 𝑟𝑖𝑡𝑟𝑗𝑡𝑟ℎ𝑡

𝑇
𝑡=1   (14) 
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𝑘̂𝑖,⁡𝑛2(𝑗−1)+𝑛(ℎ−1)+𝑙 = 𝑇−1∑ 𝑟𝑖𝑡𝑟𝑗𝑡𝑟ℎ𝑡𝑟𝑙𝑡
𝑇
𝑡=1  , 𝑟𝑖𝑡 = 𝑅𝑖𝑡 − 𝑚̂𝑖, 𝑖 = 1,2,… , 𝑛  

𝑅𝑖𝑡 is the return on i asset at time t, 𝑚̂𝑖 is the estimated mean return on asset i, 𝑣̂𝑖𝑗 is estimated 

covariance between assets i and j, 𝑠̂𝑖,𝑛(𝑗−1)+ℎ is co-skewness for assets i, j, and h, and 𝑘̂𝑖,⁡𝑛2(𝑗−1)+𝑛(ℎ−1)+𝑙 is 

co-kurtosis for assets i, j, h, and l; n is the number of stocks. Corresponding portfolio characteristics are: 

m—the vector of portfolio returns, V—the portfolio covariance matrix, S—the portfolio skewness matrix, and 

K—the portfolio kurtosis matrix. One can see from the notation of moments that the author supposes the vector 

of returns and all matrices to be time independent. To secure the necessary precision and accuracy of portfolio 

optimization, time T must be chosen sufficiently large. It makes the matrices V, S, and K huge. To deal with 

them, the author applies the method of matrix shrinkage developed by Ledoit and Wolf (2003; 2004), Martellini 

and Ziemann (2010), Boudt, Cornilly, and Verdonck. (2020). 

For an investor holding a portfolio of assets with shares 0 ≤ 𝑥𝑖 ≤ 1, it makes the portfolio vector 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)
′, 𝟏′𝒙 = 1, 𝟏′ = (1, 1,… , 1)𝑛, the portfolio return 𝑅(𝒙) = 𝒙′𝒎̂ with the expected return 

𝑚𝑝(𝒙) = 𝐸(𝑅(𝒙)) = 𝒙′𝝁, the portfolio covariance matrix 𝑣𝑝(𝒙) = 𝑉𝑎𝑟(𝑅(𝒙)) = 𝒙′𝑽𝒙, the skewness matrix 

𝑆𝑝(𝒙) = 𝑆𝑘𝑒𝑤(𝑅(𝒙)) = 𝒙′𝑺(𝒙⊗ 𝒙) (symbol ⊗ denotes the Kronecker product), and the kurtosis matrix 

𝐾𝑝(𝒙) = 𝐾𝑢𝑟𝑡(𝑅(𝒙)) = 𝒙′𝑲(𝒙⊗ 𝒙⊗𝒙). 

Then the author introduces the representative set D and the admissible set P: 

𝐷 = {𝑧 ∈ 𝑅|𝑧|: 𝒙 ∈ 𝑃, 𝑧 ≤ 𝑧𝑝(𝒙)} , 𝑃 = {𝒙 ∈ 𝑅𝑛:⁡𝒙 ≥ 𝟎, 𝟏′𝒙 = 1}  (15) 

|z| denotes the dimension of vector z: |z| = 2 for MV problem, |z| = 3 for MVS problem, and |z| = 4 for 

MVSK problem. 

The shortage function or the directional distance function which serves as a measure of portfolio 

efficiency is defined as 

𝑆𝑔(𝒙) = sup⁡{𝛿 ≥ 0: 𝑧𝑝(𝒙) + 𝛿𝒈 ∈ 𝐷}. (16) 

Vector g determines the direction in which the moments should be expanded or contracted: in MV case 

𝑔1 ≥ 0 and 𝑔2 ≤ 0 for expending expected returns and contracting their variance. To find a point on the 

portfolio frontier along the direction g, one must maximize the measure of portfolio efficiency together with x. 

For a point on the frontier 𝛿 = 0. 

The author put the portfolio optimization problem, using the directional distance function, as (Krueger, 

2021, p. 1441): 

max
𝛿,𝒙

⁡𝛿 

s.t. 𝑚̂𝑖 + 𝛿𝑔𝑚 ≤ 𝑚̂𝑝(𝒙) 

𝑣̂𝑖 − 𝛿𝑔𝑣 ≥ 𝑣̂𝑝(𝒙) 

𝑠̂𝑖 + 𝛿𝑔𝑠 ≤ 𝑠̂𝑝(𝒙) 

𝑘̂𝑖 − 𝛿𝑔𝑘 ≥ 𝑘̂𝑝(𝒙) 

𝟏′𝒙 = 1, 𝒙 ≥ 𝟎, 𝒈 = (𝑔𝑚, 𝑔𝑣 , 𝑔𝑠, 𝑔𝑘)
′, 𝑖 ∈ {1,2,… , 𝑛} (17) 

He solves this problem for the series of single fixed directions first by maximizing the mean return (choosing 

vector 𝒈 = (|𝑚̂𝑖|,0,0,0)
′ ), then by minimizing only the variance (𝒈 = (0, 𝑣̂𝑖 , 0,0)

′ ), then maximizing the 

skewness (𝒈 = (0,0, |𝑠̂𝑖|,0)
′), and minimizing kurtosis (𝒈 = (0,0,0, |𝑘̂𝑖|)

′) (Krueger, 2021, pp. 1442, 1450-1452). 

For the empirical application of the developed technique, Krueger chooses the five-factor model (Fama & 

French, 2015). For the market returns, he uses returns on indices of US firms listed on the NYSE, AMEX, or 
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NASDAQ. Then he develops portfolios formed on the size as measured by equity quintiles, including all NYSE, 

AMEX, or NASDAQ stocks, portfolios formed on quintiles of book-to-market ratio, portfolios formed on 

quintiles of operating profitability (annual revenues less cost of goods sold, commercial, interest, general, and 

administrative expenses divided by book equity), and portfolios formed on quintiles of investments (the change 

in total assets from the fiscal year (t - 2) to the fiscal year (t - 1), divided by the total asset in the year (t - 2). 

The author documents that the efficient portfolios are composed of small stocks, stocks with a high 

book-to-market ratio, stocks with high operating profitability, and stocks of firms with low investments. 

Krueger confirms the dramatic role of skewness in portfolio optimization; skewness helps speed up the search 

for efficient frontiers. 

With due respect to the sophisticated model developed by the author and his predecessors, we call the 

reader to take the conclusions of this paper with great caution. First, the author supposes the statistical moments 

of a firm to be independent of time (Eq. (13)). However, the moments are the functions of time (see Section 4), 

and the time-averaging procedure introduces unacceptable errors in the moment estimations. Huge volumes of 

measurements that one needs for estimating higher moments (the variance, skewness, kurtosis) in the 

nonparametric study make this method completely unreliable. The second weakness of this paper is the 

unconditional maximization of skewness when solving Eq. (17). Positive skewness comes with a high default 

probability (see Section 4) that makes the “optimal” portfolio profitable but unstable. Mark that all portfolios 

that the author takes for the efficient ones (small size, large book-to-market ratio, low investments) are of low 

stability. To remove this defect, one must reset the maximization problem like this: find the maximum mean 

return and skewness under the constraint that the default probability does not exceed an agreed threshold. 

As we have said above, for the skewed return distributions, the variance is not an adequate measure of 

default probability; thus, the minimization of variance becomes useless. Unfortunately, this method, as it is, 

cannot estimate the default probability of the firm. EMM can be of great assistance in solving that task. 

However, even this help cannot save the method because of its first deadly weakness. In our opinion, the 

nonparametric methods of solving the optimal portfolio allocation problem have a very little chance for success. 

The skew-elliptic methods (see below) seem much more promising. 

Another stream of literature on optimal portfolio selection includes papers that introduce asymmetry in the 

standard GBM distribution of asset returns, considering the return dynamics as a jump-diffusion process. Since 

the original paper (Merton, 1971), the problem of portfolio choice in the presence of asset skewness has 

become a topic of growing interest (e.g., Merton, 1976; Aase, 1984; Aase & Oksendal, 1988; Liu et al., 2003; 

Das & Uppal, 2004; Cvitanic et al., 2008). We discuss here a pair of typical papers from this block. 

The paper (Liu et al., 2003) studies the implications of event-related jumps in security prices and volatility 

on optimal dynamic portfolio strategies. In the model, both the security price and the volatility of its returns 

follow jump-diffusion processes. Jumps are triggered by Poisson events, which have the intensity proportional 

to the level of volatility. The authors obtain a closed-form solution for the optimal portfolio weight in these 

conditions. They show that the optimal portfolio strategy with event-generated jumps makes an investor behave 

if she faces short selling and borrowing constraints even if there is none. The authors conclude that the optimal 

portfolio is a blend of the continuous-time GBM solution and the optimal portfolio for the static optimal 

buy-and-hold problem. To illustrate theoretical findings, the authors provide two examples. The first is the 

model where the risky asset follows a jump-diffusion process with deterministic jump sizes and constant return 

volatility. The model demonstrates that the investor facing jumps may choose a portfolio very different from 
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the portfolio optimal for the pure diffusion process of the return development. In the presence of jumps, the 

investor prefers to see less risky assets in her portfolio. The second model considers the case when the risky 

asset and its return volatility follow a jump-diffusion process with deterministic jump sizes. The authors 

conclude that the optimal portfolio weight does not depend on the level of volatility but mainly depends on the 

horizon of investments. They conclude that volatility jumps significantly affect the optimal portfolio above and 

beyond the effect of price jumps. 

Das and Uppal (2004) aim to evaluate the gains from international diversification in the presence of 

systemic risk, understood as the risk from infrequent events that strongly correlate across a large number of 

assets. Such connected shocks across international stock markets result mainly from information transmission 

(Engle et al., 1990). Das and Uppal (2004) construct a dynamic model with preferences given by a constant 

relative risk aversion utility function (CRRA), where the effects of the return skewness appear due to a standard 

jump-diffusion process describing the asset return development. The authors assume that the jumps across 

assets happen synchronously, though their size can vary across assets. They find that while the systemic risk 

causes a shift in the allocation of wealth from risky assets to riskless assets, it has a negligibly small effect (it 

decreases the $1 return by $0.001 for the developed-country indexes and $0.06 for the emerging-country 

indexes). In these problem settings, the portfolio taking account of the systemic risk just insignificantly differs 

from the portfolio using the mean-variance optimization of Markowitz. Das and Uppal forget that portfolios 

and their assets are skewed even without systemic jumps, and the mean-variance optimization is not generally 

efficient. 

As one can see, in the jump-diffusion approach to the optimal portfolio allocation, the skewness in the 

asset returns is provided by the jumps generated and controlled by the market events exterior to the firm 

dynamics. Depending on the intensity and size of jumps, their effect on portfolio allocation varies significantly. 

However, the asset returns have their own asymmetry generated by the firm dynamics additionally strengthened 

by a collective behavior of market traders. Because the return distribution is governed by Eq. (1), and market 

events are exogenous to the firm development, one can never correctly describe the asymmetry of the naturally 

skewed return distribution (Eqs. (1) and (6)) by the asymmetry generated by the jump-diffusion process. Thus, 

one must take cautiously all conclusions of the papers using jump-diffusion processes. 

Another branch of the studies in optimal portfolio allocation contains papers using novel probability 

distributions with controllable skewness, which can flexibly describe both empirical data and theoretical results 

in asset returns. These distributions belong to the class of analytically tractable skew-elliptical probability 

distributions. The first such distribution is the multivariate skew-normal distribution (MSN) developed by 

Azzalini and Dalla Valle (1996). Its further development, having more controlling parameters and, thus, more 

flexible, has appeared in the papers (Arnold & Beaver, 2000; Adcock & Shutes, 2001) under the name of the 

multivariate extended skew-normal distribution (MESN). A more powerful generalization of these two 

distributions (but much more complicated) is the multivariate skew-Student t distribution having heavier tails 

(Branco & Dey, 2001; Adcock, 2002; Azzalini & Capitanio, 2003). One can find comprehensive reviews of 

these probability distributions in the papers (Azzalini, 2005; Adcock et al., 2012). 

One method of generating the skew-normal distribution is to take a bivariate normal distribution (X, Y) and 

then develop a conditional distribution X given the condition Y > 0. This representation is equivalent to the 

distribution of U + λV, where U is a normal distribution and V, independent of U, is the normal distribution N(τ, 

1) truncated from below at zero. This distribution is analytically tractable and possesses a lot of useful 
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theoretical properties. Another way to introduce a skewed distribution is, for example, to consider a random U 

having normal distribution and a non-negative V having exponential distribution, producing the 

normal-exponential distribution (Aigner et al., 1977). Without information about the behavior of asset return 

distribution, the researchers studying the optimal portfolio allocation have to make reasonable assumptions 

about this behavior. The goodness of such distributions depends on how correct the assumptions are. 

Harvey et al. (2010) address the problem of the optimal portfolio allocation using higher moments 

(skewness) and estimating risks in a coherent Bayesian framework. In a comprehensive study, they specify a 

Bayesian probability model for the joint distribution of asset returns. In the next step, the authors calculate and 

maximize expected utilities in the face of parameter uncertainty using Bayesian methods. Discussing the role of 

skewness, the authors share a general opinion of the unconditionally beneficial effect that positively skewed 

returns make on portfolio selection. For the probability distribution describing asset returns, the authors choose 

the multivariate skew normal probability distribution suggested by Sahu et al. (2003) and then offer a 

generalization of this model. 

The multivariate skew normal distribution is presented by a mixture of an unrestricted multivariate normal 

density and a truncated, latent multivariate normal density 𝑋 = 𝜇 + ∆𝑍 + 𝜀 , where µ and Δ are unknown 

parameter vector and matrix, ε is a normally distributed error vector with a zero mean and covariance Σ, and Z 

is a vector of latent random variables. Z comes from the multivariate normal with the mean zero and an identity 

covariance matrix and is truncated at zero from below (Z ≥ 0). Harvey et al. (2010) consider Δ as an 

unrestricted random matrix allowing for co-skewness. Under reasonable assumptions about the properties of 

𝜇, ∆, and Σ, the estimation is done using the Markov Chain Monte Carlo algorithm. The authors use Bayesian 

methods to include parameter uncertainty into the predictive distribution of returns and then optimize the 

expected utility. The optimal portfolio allocation is based on the maximization of asset mean returns and 

skewness keeping the variance fixed according to the assumption that investors prefer assets with a high upside 

to assets with a large downside (Kraus & Litzenberger, 1976). As we know, this allocation leads to the 

development of the profitable but unstable portfolio threatening its investor with sudden losses. 

The important paper (Mencia & Sentana, 2009) makes the mean-variance-skewness analysis fully 

operational by working with another family of multivariate asymmetric distributions known as Location-Scale 

Mixtures of Normals (LSMN). This family nests several important symmetric distributions as the Gaussian and 

Student t distributions and asymmetric distributions like the Generalized Hyperbolic (Barndorff-Nielsen, 1977), 

Normal-Gamma (Madan & Milne, 1991), etc. LSMN nests the finite mixture of normals, which make a flexible 

and empirically plausible instrument to deal with asymmetric asset returns while remaining analytically 

tractable. The authors consider the portfolio allocation problem when asymmetric asset returns are assumed to 

be precisely known (no stochastic noise). An LSMN random vector r can be presented as 

𝒓 = 𝒗 + ξ
−1𝒀𝜹+ ξ

−1/2𝒀1/2𝜺 , (18) 

where 𝒓, 𝒗, and 𝜹 are N-dimensional vectors, 𝒀 is a positive definite matrix of order N, 𝜺~𝑁(𝟎, 𝑰), and ξ is 

an independent positive mixing variable whose distribution depends on a vector of q shape parameters ϱ. Since 

r given ξ is Gaussian with the conditional mean 𝒗 + ξ−1𝒀𝜹 and covariance matrix ξ−1𝒀, then 𝒗 and 𝒀 act 

as the location vector and the dispersion matrix. Parameters ϱ allow for flexible tail modeling, while the vector 

δ introduces skewness in this distribution. The authors prove that if the asset return distribution can be 

presented as an LSMN distribution, then the distribution of any portfolio combining those assets can uniquely 

be represented by its mean, variance, and skewness. From the investor’s point of view, such portfolios have a 
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very attractive property: any two portfolios can be expressed in terms of the first three moments because all 

higher-order moments fully depend on these three and tail parameters ϱ. Mencia and Sentana (2009) show that 

the efficient part of the portfolio frontier can be spanned by three funds: the fund that together with a fund of 

riskless assets generates the usual mean-variance efficient frontier plus a fund that can be interpreted as the 

skewness-variance efficient portfolio. This result causes our strong doubts. 

One can see from the solution of the optimal portfolio problem that the authors interpret the variance as an 

adequate measure of asset risks. We repeat that for skewed distributions, the default probability is an adequate 

measure of risk rather than the variance (compare Figures 9 and 12). The portfolio optimization problem with 

higher moments must be put like this. Determine the vector of asset weights providing for the maximum of the 

portfolio mean return and skewness given that the intensity of the firm default probability is under a given 

threshold. There is no efficient mean-variance portfolio and no efficient skewness-variance portfolio in this 

optimization problem. Unfortunately, the method used by the authors does not allow computing the intensity of 

default probability and the default probability. EMM could be of assistance in this case. 

Modeling Return Distribution with EMM 

We solve EMM problem (1.1)-(7.1) with π(t) ≡ 1 and DL = 0 (the unlevered firm) numerically, estimating the 

mean log returns H_BP(t), mean returns MX_BP(t), variance VAR_BP(t), skewness SK_BP(t), and default 

probability DP(t). We trace down the dependence of statistical moments of the return distribution and the 

default probability on the parameters of the firm and its business environment. At this stage, we suppose that all 

perfect market assumptions hold. Model parameters are R = 0.10, 𝜎0
2 = 0.02, C2 = 0.01, T = 25 (years). 

The log return 𝑥 = ln⁡(𝑅𝑋/𝑃0), the (dollar) return 𝑋 = (𝑃0/𝑅)𝑒
𝑥 , the log-return mean 𝐻_𝐵𝑃(𝑡) =

∫ 𝑥𝑉̂(𝑥, 𝑡)𝑑𝑥
∞

𝐷𝐿
, the mean non-dimensional return 𝑀𝑋_𝐵𝑃(𝑡) = 𝑃0/(𝑅〈𝑋0〉) ∫ 𝑒𝑥𝑉̂(𝑥, 𝑡)𝑑𝑥

∞

𝐷𝐿
. The initial 

distance to the default line is 𝐻0 = ∫ 𝑥𝑉0(𝑥)𝑑𝑥
∞

𝐷𝐿
, 𝑉0(𝑥) = 𝑁(𝑥;𝐻0, 𝜎0

2), the normal density. As one can see 

from the pictures, the return distribution and its derivatives depend on the parameter H0; to a much lesser 

degree, the distribution depends on the initial variance 𝜎0
2 and the intensity of shocks C2. The last two 

dependencies are not shown. 

Returning to the question of the effect of firm size 〈𝑋〉 on its mean returns, one can see that it is not the 

firm size that governs the firm state and dynamics, but the relationship between the mean yearly income 

𝑅〈𝑋(𝑡)〉 and yearly expenses P(t). The same size 〈𝑋0〉 can lead the firm to a steady state with H0 > 1.5 as well 

as to a shaky state with H0 < 1.3. Therefore, a very popular parameter SMB (the small firm minus the big firm) 

does not uniquely determine the states of two firms and can refer to the difference in characteristics of two 

shaky firms, two steady firms, or steady less shaky and vice versa. This confusion explains the mixed success of 

the predictive power of size in asset pricing models. The same could be said about all proxies used in asset pricing 

models with “fundamental” variables. We will use the term “the small firm” referring to the shaky firm with a 

short distance to the default line, and “the big firm” meaning a steady firm with a long distance to the default line. 

Figures 1 and 2 show that the small firm has a lesser return than the large firm given that they have the 

same expected rate of returns (〈𝑋𝑆〉/𝑃𝑆 < 〈𝑋𝐵〉/𝑃𝐵). It is clear that to achieve a greater return than a large firm 

the small firm must take a project with a higher rate of expected returns, R, and a higher level of risk, C2. Of 

course, this tactic leads to a higher death rate for small firms. However, the conditional distribution, consisting 
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of the firms who survived at the time of observation t, will show higher returns for the small firm compared to 

the large one. Large firms usually value the stability of their development rather than the fast growth of their 

assets and, therefore, they choose projects with a lesser rate of expected returns. 
 

 
Figure 1. Mean log returns H_BP(t) - H0 as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 

1.8 (line 2), 1.6 (line 3), and 1.4 (line 4); VAR0 = 0.02. 
 

 
Figure 2. Mean non-dimensional returns MX_BP(t) - 1 as a function of time (years) for various initial conditions H0 = 

2.0 (line 1), 1.8 (line 2), 1.6 (line 3), and 1.4 (line 4); VAR0 = 0.02. 
 

Figure 3 demonstrates the time dependence of the variance VAR_BP(t) - VAR0 for different H0 values of 

steady (large) firms. Mark how the variance grows with the decrease of the distance to default because of faster 

growth of the distribution skewness. The variance and the default probability are concurrent, and the variance 

can be considered as a measure of risk. Figure 9 shows the time dependence of the variance VAR_BP(t) - VAR0 
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for shaky (small) firms. There is no clear relationship between the initial state of the firm and the variance in 

this case, while the default probability grows as the distance to default decrease. The inference from this fact is 

that the variance is no measure of risks for shaky firms. It means that the variance (beta) cannot be an 

explaining variable in a perspective asset-pricing model. 
 

 
Figure 3. Variance VAR_BP(t) - VAR0 as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 1.8 

(line 2), 1.6 (line 3), and 1.4 (line 4); VAR0 = 0.02. 
 

 
Figure 4. Evolution of the boundary problem distribution FBP(x, t) for H0 = 1.4 and t = 0 (line 1), 5 (line 2), 10 (line 

3), 15 (line 4), 20 (line 5); VAR0 = 0.02. 
 

Figures 5, 6 and 11, 12 present the development of distribution skewness and the default probability for 

different initial distances to the default line H0. Figures 5 and 6 show that the greater the absolute value of the 

negative skewness, the greater the default probability. Figure 5 depicts the case when the negative (left) tail 
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freely grows to the default boundary DL = 0. In Figure 11, the tail of the distribution FBP(x, t; H0 = 1.2) has 

reached the boundary at time t ≈ 7. The default boundary stops the tail left development and pushes the 

distribution to the right, changing the sign of skewness development from negative to positive. This change is 

accompanied by growth of the default probability (see Figures 6 and 12). 
 

 
Figure 5. Skewness SK_BP(t) as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 1.8 (line 2), 

1.6 (line 3), and 1.4 (line 4); VAR0 = 0.02. 
 

 
Figure 6. Default probability DPR(t; H0) as a function of time (years) for various initial conditions H0 = 1.8 (line 1), 

1.6 (line 2), and 1.4 (line 3); VAR0 = 0.02. 
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Figure 7. Mean log returns H_BP(t) - H0 as a function of time (years) for various initial conditions H0 = 1.2 (line 1), 

1.1 (line 2), 1.0 (line 3), and 0.9 (line 4); VAR0 = 0.02. 
 

 
Figure. 8 Mean non-dimensional returns MX_BP(t) - 1 as a function of time (years) for various initial conditions H0 = 

1.2 (line 1), 1.1 (line 2), 1.0 (line 3), and 0.9 (line 4); VAR0 = 0.02. 
 

Figures 9 and 12 support the statement that for skewed return distributions of the firms paying their BSEs, 

the variance is not an adequate measure of risk. To optimize portfolio allocation, one must know the default 

probability (the intensity of default probability) as a function of time and parameters of the firm and its business 

environment and keep it at or below the threshold value while maximizing the mean asset returns and 

skewness. 
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Figure 9. Variance VAR_BP(t) - VAR0 as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 1.8 

(line 2), 1.6 (line 3), and 1.4 (line 4); VAR0 = 0.02. 
 

 
Figure 10. Evolution of the boundary problem distribution FBP(x, t) for H0 = 0.9 and t = 0 (line 1), 2 (line 2), 4 (line 

3), 6 (line 4), 8 (line 5), 10 (line 6), 12 (line 7); VAR0 = 0.02. 

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

0 2 4 6 8 10 12

VAR_BP - V0, H0 = 1.2 (line 1), 1.1 (2), 1.0 (3), 0.9 (4), V0 = 0.02

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

0 0.5 1 1.5 2 2.5 3 3.5

FBP(x, t), t = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6), 12 (7), H0 = 0.9, V0= 0.02  



ASSET PRICING AND EFFICIENT PORTFOLIO ALLOCATION 

 

318 

 
Figure 11. Skewness SK_BP(t) as a function of time (years) for various initial conditions H0 = 1.4 (line 1), 1.2 (line 2), 

1.1 (line 3), 1.0 (line 4), and 0.9 (line 5); VAR0 = 0.02. 
 

 
Figure 12. Default probability DPR(t; H0) as a function of time (years) for various initial conditions H0 = 1.4 (line 1), 

1.2 (line 2), 1.1 (line 3), 1.0 (line 4), and 0.9 (line 5); VAR0 = 0.02. 
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Figure 13. Evolution of the boundary problem distribution FBP(x, t) for H0 = 1.2 and t = 0 (line 1), 3 (line 2), 6 (line 

3), 9 (line 4), 12 (line 5), 15 (line 6); VAR0 = 0.02. 
 

 
Figure 14. Evolution of the boundary problem distribution FBP(x, t) for H0 = 1.0 and t = 0 (line 1), 3 (line 2), 6 (line 

3), 9 (line 4), 12 (line 5); VAR0 = 0.02. 
 

Figures 5, 10, 13, and 14 demonstrate the development of return distributions FBP(x, H0) for different 

initial distances to the default line H0. Here one can see the evolution of distribution skewness from negative to 

positive values. 

Figures 7, 8, and 12 show that the low asset growth is very deceptive: the firm assets still grow although 

slowly, but the default probability has achieved high values inflicting the firm high losses and threatening it 

with soon default. 

 

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

FBP(x, t),   t = 0 (line 1), 3 (2), 6 (3), 9 (4), 12 (5), 15 (6), H0 = 1.2, V0 = 0.02

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

0 0.5 1 1.5 2 2.5 3 3.5 4

FBP(x, t) t = 0 (line 1), 3 (2), 6 (3), 9 (4), 12 (5),  H0 = 1.0, V0 = 0.02



ASSET PRICING AND EFFICIENT PORTFOLIO ALLOCATION 

 

320 

Conclusion 

The problems of asset pricing and efficient portfolio allocation have captured significant attention in the 

theoretical and empirical studies of investments since the middle of the 1960th. The first fundamental results in 

that direction are Markowitz’s mean-variance optimal portfolio theory (MV optimization) and Sharp-Lintner’s 

capital asset pricing model (CAPM). Both theories assume the normal distribution of asset returns and the 

lognormal distribution of assets. In the 1970th, these theories have got a support from Merton’s “option 

hypothesis” coined as “while options are highly specialized and relatively unimportant financial instruments 

[. . .] the same basic approach could be applied in developing a pricing theory for corporate liabilities in general” 

(Merton, 1974, p. 449) because of “isomorphic correspondence between almost any corporate liability and 

options”. Financial economists have readily accepted Merton’s hypothesis and the geometric Brownian model 

(GBM) following from it. GBM has become the most popular model in credit risk analysis. The return 

distribution satisfying GBM is a normal distribution consistent with Markowitz’s and Sharp-Lintner’s theories, 

but contradicting the observed data. To analyze the results presented in literature, we use EMM taking account 

of the firm’s business securing expenses (BSEs) and generating the return distributions whose skewness grows 

on time. 

The empirical data accumulated in the 1980th show that the observed default frequencies are much higher 

than the default probabilities predicted by GBM. To meet the facts, some theorists begin to use the class of 

elliptic functions to describe asset returns. This class of symmetric functions includes the functions whose tails 

are heavier than the tails of the normal distribution (e.g., Student’s t distribution). The researchers use elliptic 

functions in estimating the misspecification of asset pricing models (the Hansen-Jagannathan distance, 1997), 

though with little success. We explain this little success by the different shapes of efficient frontiers; a concave 

up surface for symmetric distributions of asset returns assumed by Hansen and Jagannathan and a surface with 

edges for skewed distributions (Athayde & Flores, 2004). 

Meanwhile, empirical evidence of skewness of asset returns and portfolios appears, starting the period of 

asset pricing models and portfolio allocation methods taking account of higher moments (skewness and 

kurtosis) in asset returns. Some researchers studying portfolio allocation problems assume that the asset return 

skewness is generated by jump-diffusion processes exogenous to the firm dynamics. Because the asset return 

skewness is a natural consequence of the inner dynamics of the firm paying its BSEs, the results of these 

jump-diffusion studies are always misleading. 

Another group of researchers applies skew-elliptic functions to approximate the asset return distribution. 

These skewed functions have a set of parameters for flexible tuning their skewness and tails. In addition to 

flexibility, the skew-elliptic functions allow for achieving closed-form solutions which is very helpful for 

solving the efficient portfolio allocation problem. To perform efficient allocation lacking information about the 

return distributions, the researchers must make reasonable assumptions about these distributions. Of course, 

optimization outcomes depend on how good those assumptions are. 

A much heavier problem represents the traditional approach to portfolio optimization ascending to 

Markowitz’s MV optimization, which, to the best of our knowledge, is used by all researchers of portfolio 

optimization with higher moments before the summer of 2022. When performing MV optimization, one 

maximizes the mean portfolio return, keeping the risks fixed. At that, the variance is considered a good measure 

of risk, which is absolutely true for the diffusion spread of returns. To find the efficient portfolio of skewed 
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asset distributions in the frameworks of this model, the researchers maximize the portfolio mean return and 

skewness while keeping the variance fixed. However, we have shown that high positive skewness comes with a 

high default probability, and the unconditional maximization of portfolio skewness dangerously increases 

portfolio risks. Second, for skewed asset returns, the variance is no adequate measure of asset risks because the 

asset spread depends now on both the diffusion and growing distribution tail. In these conditions, the intensity 

of default probability, or the default probability itself, is a better measure of asset risks. Therefore, for higher 

moment portfolio optimization, one must solve the following problem: maximize the mean return and skewness 

while keeping the default probability under control. The EMM results presented in this paper support the thesis 

that the variance is no good measure of risk for the skewed distributions. 

Unfortunately, the settings of the optimal portfolio allocation problem, as they are seen by all researchers 

studying it, do not allow estimating the default probability. We suggest a possible resolution of this conflict by 

joining the efforts of two approaches: EMM and the skew-elliptic function method. EMM generates the asset 

return distribution providing the information for tuning the skew-elliptic functions and computes the default 

probabilities for performing the correct portfolio optimization; the skew-elliptic function method solves the 

portfolio optimization problem using the data provided by EMM. 

Asset pricing models using heuristic/fundamental variables meet with mixed success because of lacking 

knowledge about the asset return distribution and the parameters and mechanisms controlling its development. 

We have shown that even size SMB, the most popular variable in asset pricing models, does not uniquely 

determine the firm state and dynamics. The fact that the variance is no measure of risks for shaky firms means 

that the variance (beta) cannot be an explaining variable in the perspective asset-pricing model taking account 

of higher moments. A more systematic approach to the asset-pricing problem using EMM information about 

the asset return distributions could be helpful. 
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