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1. Introduction  

Sylow theorems form a primal part of finite group 

theory and have very significant applications in the 

classification of finite simple groups. Sylow’s 

theorems give significantly more information about 

the subgroups of a finite group. The reverse of 

Lagrange’s theorem is not true. Thus if G is a group of 

order p and q divides p, then G does not necessarily 

possess a subgroup of order q. The Sylow theorem 

however, does provide a converse for Lagrange’s 

theorem; in certain cases it ensures subgroups of 

specific orders. This theorem yields a powerful set of 

tools for the classification of all finite nonabelian 

groups. Sylow’s and Lagrange’s theorem are the two 

most substantial results in finite group theory. The 

first gives a sufficient condition for the existence of 

subgroups and the second gives a necessary condition 

[1]. 

2. Preliminaries 

In this section, supporting definitions, corollary, 

theorems and lemma are presented. 

Lemma 2.1. If p is prime that divides ab, then p 

divides a or p divides b. 
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Proof. Suppose p is a prime that divides ab but does 

not divide a. We must show that p divides b. Since p 

does not divide a, there are integers s and t such that 1 

= as+pt. Then b = abs+ptb, and since p divides the 

right-hand side of this equation, p also divides b. 

2.1 Binaary Operation 

Let G be a set. A binary operation on G is a 

function that assigns each ordered pair of elements of 

G an element of G. 

2.2 Group 

Let G be a set together with a binary operation 

(usually called multiplication) that assigns to each 

ordered pair (a, b) of elements of G an element in G 

denoted by ab. We say G is a group under this 

operation if the following three properties are 

satisfied. 

1) Associative. The operation is associative; that 

is, abc = a(bc) for all a, b, cG. 

2) Identity. There is an element e (called the 

identity) in G such that ae = ea = a for all 

aG. 

3) Inverse. For each element aG, there is an 

element bG (called inverse of a) such that 

ab = ba = e. 

If a group has the property that ab = ba for every 

pair of elements a and b, we say the group is Abelian. 
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Theorem 2.2. In a group G, there is only one 

identity element. 

Proof. Suppose both e and e' are identities of G. 

Then, 

1) ae = a for every aG, and 

2) ea = a for every aG. 

The choices of a = e' in (part 1) and a = e in (part 2) 

yields e'e = e. Thus e and e0 are both equal to e'e and 

so are equal to each other. 

Theorem 2.3. For each element a in a group G, 

there is a unique element bG such that ab = ba = e. 

Proof. Suppose b and c are both inverses of a. Then 

ab = e and ac = e, so that ab = ac. 

Canceling the a on both side gives b = c, as desired. 

2.3 Order of a Group 

The number of elements of a group (finite or 

infinite) is called its order. We will use G to denote 

the order of G. 

Thus, the group Z of integers under addition has 

infinite order, whereas the group U(10) = {1; 3; 7; 9} 

g under multiplication modulo 10 has order 4. 

2.4 Order of an Element 

The order of an element g in a group G is the 

smallest positive n such that gn
 = e. (In addition 

notation, this would be ng = 0). If no such integer 

exists, we say that g has infinite order. The order of an 

element g is denoted by g. 

2.5 Subgroup 

If a subset H of a group G is itself a group under the 

operation of G, we say that H is a subgroup of G. 

The notation H ≤ G is used to mean that H is a 

subgroup of G. If we want to indicate that H is a 

subgroup of G but is not equal to G itself, we write H 

< G. Such a group is called a proper subgroup. 

2.6 Cyclic Group 

A group G is called cyclic if there is an element 

aG such that G = {annℤ}. Such an element a is 

called a generator of G. The cyclic group G generated 

by G is denoted by G = < a >. 

Theorem 2.4. Every finite Abelian group is a direct 

product of cyclic groups of prime-power order. 

Moreover, the number of terms in the product and the 

order of the cyclic groups are uniquely determined by 

the group [2]. 

Theorem 2.5. Every cyclic group is Abelian. 

Proof. The elements of cyclic groups are of the 

form ai. Commutativity amounts to proving that 

aiaj = ajai. 

aiaj = ai+j 

= aj+i addition of integers is commutative 

= ajai [3]. 

3. Main Result 

3.1 p-Group 

Let p be a prime number. A p group is any finite 

group whose order is a power of p. 

3.2 Example and Non-example 

1) The dihedral group D4 = < a, ba4
 = b2

 = e; ab = 

ba-1 > has order 8 = 23
 and therefore is a 2-group. 

2) The symmetric group S3
 has order 6  pn

 for any 

prime p and therefore not a p-group. 

3.3 Sylow p-Subgroup 

Let G be a finite group and let p be prime such that 

pk
 divides G and pk+1

 does not divide G, then any 

subgroup of G of order pk is called a Sylow 

p-subgroup of G. 

3.4 Examples 

1) Let G be a group of order 315000 = 23.32.54.7. 

We call any subgroup of order 8 = 23, a Sylow 

2-subgroup of G. Similarly, any subgroup of 

order 625 = 54 is a Sylow 5-subgroup of G and 

so on. 

2) Consider the symmetric group S3 = {e; (12); 

(13); (23); (231); (312)} with order S3 = 6 = 
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21.31. This group has three Sylow 2-subgroups, 

namely 

(a) H1 = {e; (12)} such that H1 = 21 

(b) H2 = {e; (13)} such that H2 = 21 

(c) H3 = {e; (23)} such that H3 = 21 

3) The dihedral group D4 has five Sylow 2-groups, 

each generated respectively by s; 2; s; 2s; 

3s. 

Lemma 3.1. Let A be a finite abelian group and p 

be prime. If pA, then A has an element of order p [4]. 

3.5 Examples 

1) Let p be prime. Then the group (ℤn, +) is cyclic 

and therefore abelian if n = p. Thus (ℤp, +) is 

an abelian group of order p and the order of 

every element a in (ℤp, +) is p/gcd(a, p). Thus, 

every aℤp which is relatively prime to p has 

order p. 

2) The prime number 5 divides the order of the 

abelian group ℤ5 and every element in ℤ5, except 0, 

has order five. 

Theorem 3.2. Let G be a finite group and p be 

prime. If pkG, then G has a subgroup of order pk. 

3.6 Illustration 

Suppose we have a group G such that G = 360 = 

23.32.51. Then the Sylow’s First Theorem says that G 

must have at least one subgroup of each of the 

following orders: 8, 9, and 5. In contrast, this theorem 

tells us nothing about the existence of subgroups of 

orders 6, 10, 12, or any other divisors of G = 360 that 

has two or more distinct prime factors. 

Corollary 3.3. Let G be a finite group and let p be a 

prime that divided the order of G. 

Then G has an element of order p [5]. 

3.7 Examples 

1) The Dihedral group D8 has order 8 and  

D8 = < x, a: a4 = x2 = e; xax-1 = G-1 >  

Hence the prime 2 divides D8 and is also the order 

of the elements  

a2, x, ax = xa3, a2x, a3x = xaD8 

2) The Klein 4-group (ℤ/8ℤ)* = {1, 3, 5, 7} has 

order 4. The prime 2(ℤ/8ℤ)* and it’s also the 

order of the non identity elements 3, 6, 7 

(ℤ/8ℤ)* 

Theorem 3.4. Let G be a p-group. Then the order 

of G is a power of p. 

Proof. If q  p is a prime which divides G, then G 

would have an element of order q by Cauchy’s 

Theorem. This contradicts the definition of a p-group, 

so we must have G = pn for some nN [6]. 

3.8 Example 

Consider the group (ℤ36, +). The order of the group 

is 36 = 2232
 and therefore a Sylow 2-subgroup has 

order 4, and a Sylow 3-subgroup has order 9. 

Theorem 3.5. Let p be a prime. Then every group 

of order p2
 is abelian. 

Proof. If G is not cyclic, then every element for e 

must have order p because the only option are 1 (the 

identity), p, and p2 (not possible since G is not cyclic). 

We fix aG. So < a > is a subgroup of order p, and 

is a proper subgroup of G. Now fix bG, with b< 

a >. We have < a >  < b >= {e}, since, if there exist 

c  e with c< a >  < b >, then c generates both < a > 

and < b >. We would then have < a >=< b > which is 

a contradiction. 

By the First Sylow Theorem, the subgroup < a > is 

normal in some subgroup of G with order p2, and so < 

a > is normal in G. Now < a >  < b > is a subgroup 

of G, and its order must divide p2. Therefore < a >  < 

b >= G. This implies we have G < a >  < b >. Since 

< a > and < b > are abelian, then G is also abelian. We 

have G  ℤp  ℤp [6]. 

3.9 Examples 

1) The Klein four-group has a representation as a 

22 real matrices with the matrix multiplication 

operation: 

1 0 1 0 1 0 1 0
, , ,

0 1 0 1 0 1 0 1
a b c d

− −       
= = = =       

− −       
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This group has order 22
 = 4. Though a matrix group, 

it is abelian. 

Since ab = ba = 
0 0

0 1

 
 

− 
, ac = ca = 

1 0

0 1

− 
 
 

, 

ad = da = 
0 0

0 1

 
 

− 
, bc = cb =

1 0

0 1

− 
 

− 
, cd = dc = 

1 0

0 1

 
 

− 
, and bd = db = 

1 0

0 1

− 
 
 

. 

2) For every prime p, there are (up to 

isomorphism) exactly two groups of order p2, 

namely, ℤ𝑝2 and ℤpℤp. Specifically, we can 

say ℤ2ℤ2 has order 22 = 4 and is abelian. 

Theorem 3.6. Let G be a finite group, and H any 

subgroup of G. The order of G is a multiple of the 

order of H. Thus the order of H divides the order of G. 

Proof. Suppose that G has order n and that H has 

order m. We prove that m divides n. Since the cosets 

of H partition G, each element of G lies in exactly one 

coset. Let the number of distinct cosets be k. Each 

coset has exactly m elements, the same number as H. 

Thus, as each of the k cosets has m elements, there are 

km elements in all. Therefore, n = km, and m divides n 

[7]. 

3.10 Example 

The symmetric group 

{S3 = e, (12), (13), (23), (231), (312)} 

with order S3 = 6 has subgroups 

H1 = e; (12) with H1 = 2 

H2 = e; (13) with H2 = 2 

H3 = e; (23) with H3 = 2 

We see that the order of each subgroup Hi divides 

the order of S3. 

4. Conclusion 

In this paper, a numerical illustration of some 

applications of the first Sylow theorem was given. 

These numerical applications shows that if p is prime 

and pk divides the order of a finite group G, then G has 

a subgroup of order pk. 
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