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Abstract: Engineering members often include cutouts. Although the structural integrity of such members can be highly influenced 
by associated stresses, determining them may be very challenging for finite shapes operating in an industrial environment. This is 
particularly so if the loading is not well known, a common occurrence in practical situations. While photomechanical methods can be 
effective, they necessitate optical access to the component, something which is also often unavailable. Recognizing the above, this 
paper demonstrates ability to determine the complete stresses throughout a perforated tensile plate using only aligned, single-element 
strain gages rather than multi-element rosettes. Although reliability is verified using finite elements, an objective of the technique is 
for situations when finite element methods are not feasible, e.g., the loading is inadequately known. The approach is applicable to 
members fabricated from isotropic, orthotropic or functionally-graded materials and is not restricted to a particular shape, cutout 
arrangement or loading condition. 
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Nomenclature 

∇4 

 

Biharmonic operator 
co, cn, dn Airy coefficients 
N Terminating value of summation series 
φ Airy stress function 
r Radial coordinate 
θ Angle 
E Elastic modulus 
R Hole radius 
F Applied load 
σo Far-field stress 
εo Far-field strain 
[A] Airy matrix 
{c} Airy coefficient vector 
{d} Input data vector 
{d’} Predicted/reconstructed vector 
C Condition number 
RMS Root mean square 
m Number of input data values 
k Number of unknown airy coefficients 
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𝜀𝜀𝑦𝑦𝑦𝑦  Cartesian strain component 
𝜎𝜎𝑟𝑟𝑟𝑟 ,𝜎𝜎𝜃𝜃𝜃𝜃 ,𝜎𝜎𝑟𝑟𝑟𝑟  Polar stress components 
𝜎𝜎𝑥𝑥𝑥𝑥 ,𝜎𝜎𝑦𝑦𝑦𝑦 ,𝜎𝜎𝑥𝑥𝑥𝑥  Cartesian stress components 

1. Introduction 

Engineering members often involve complicated 
finite shapes which include holes and/or notches. The 
structural integrity of such members can be highly 
influenced by the associated stresses. However, 
theoretical stress analyses tend to be limited to simple, 
infinite geometries. Like numerical analyses, theoretical 
methods necessitate knowing the loading conditions. 
The latter are frequently unknown in practice. 
Acknowledging the above, the ability to obtain the 
complete stresses at and in the neighborhod of cutouts 
in  engineering  members  from  only  discretely 
measured aligned uniaxial strains is developed. A 
finite tensile aluminum plate containing a central 
circular hole is an illustrative example (Fig. 1). The 
experimental-numerical-analytical hybrid approach 
processes the measured strains with an Airy stress 
function using least-squares. Strains are recorded with 
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Fig. 1  Schematic diagram of perforate finite aluminum 
plate (6.35 mm thick). 

commercial single-element metal foil strain gages and 
the traction-free conditions are satisfied analytically 
on the edge of the hole. Results are verified 
independently. 

Extremely little literature is published on 
hybridizing measured strains with analytical and/or 
numerical tools. Ref. [1] analyzed a loaded perforated 
orthotropic composite by processing recorded strains 
using stress functions. The technique necessitated 2- 
and 3-element strain gage rosettes. In addition to 
being less expensive, the present ability to obtain all 
three components of stress from single-, rather than 
multi-element gages reduces the number of electronic 
channels needed. This simplifies the data acquisition 
requirements. Multi-element rosettes also pose the 
challenge that not all measured strains are at the same 
location. The question therefore arises at what 
common position does one assume the three strains 
occur. A pinned aluminum joint was stress analyzed 
by numerically processing recorded strains [2]. The 
strains were obtained from numerous extremely small 
commercial strip-gages. Bonding the strip-gages at 
different orientations provided the equivalence of 
multi-gage rosettes. Commercial strip gages having 
tiny elements are expensive and difficult to wire. 

The authors are unaware of any published results of 
fully stress analyzing perforated or notched 
engineering members using aligned, single-element 
strain gages. Ref. [3] is relevent to the extent it stress 
analyzed a perforated member using a single 
component of optically recorded displacements. 
Unlike the present approach, photomechanical 
methods necessitate having optical access to the 
member. This is often unavailable in “real” situations. 
Furthermore, industrial organizations are more likely 
to have the equipment for, and experience with, strain 
gages than with optical methods such as moire, 
speckle, thermoelasticity or digital image correlation 
[4]. Optically recoded displacements also require 
differentiation to get strains and hence stresses, which 
is prone to errors. 
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The presented novel approach to stress analyze 
perforated or notched engineering members enables 
one to evaluate the structural integrity of optically 
inaccessible situations. The method is based on  
sound mechanics principles and has numerous 
advantages. 

2. Relevant Stress and Strain Expressions 

A relevant Airy stress function, 𝜙𝜙, satisfying the 

biharmonic equation ∇4φ = 0, equilibrium and 
compatibility for the geometry of Fig. 1 can be written 
as follows [5-7]: 

𝜙𝜙 = 𝑎𝑎0 +  𝑏𝑏0 ln 𝑟𝑟 +  𝑐𝑐0 𝑟𝑟2 + � ��𝑎𝑎𝑛𝑛𝑟𝑟𝑛𝑛 + 𝑏𝑏𝑛𝑛rn+2 + 𝑐𝑐𝑛𝑛𝑟𝑟−𝑛𝑛 + 𝑑𝑑𝑛𝑛r−(n−2)� cos𝑛𝑛𝑛𝑛�
𝑁𝑁

𝑛𝑛=2,4,6,..

 (1) 

Imposing the traction-free condition on the 
boundary of the hole (σrθ =σrr= 0 at r = R) for all 

values of θ gives the following stress and strain 
expressions [3]. 
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where r is the radial coordinate measured from the 
center of a hole, angle θ is measured 
counter-clockwise from the horizontal x-axis (Fig. 1), 
c0, bn, and dn are Airy coefficients, E is the elastic 
modulus, v is Poisson’s ratio and R is the hole radius. 
Eqs. (1)-(7) involve a summation over n, where n goes 
through positive even integers from 2 to N, and the 
total number of coefficients is given by k = N + 1. 

3. Strain Gage Details and Plate Loading 

The plate contains commercial strain gages 
mounted as indicated in Table 1, Fig. 2 and similarly 
on the back of the plate. Only single-element gages in 
the y-direction are used such that 𝜖𝜖𝑦𝑦𝑦𝑦  is measured at 
numerous discrete locations and the Airy coefficients 
are determined from Eq. (7) and these measured 
values of 𝜖𝜖𝑦𝑦𝑦𝑦 . Due to inadequate room to bond all 
gages in a single quadrant on one face of the plate, 
gages were mounted throughout the four quadrants on 
the front and back faces. Care was taken such that 
each gage has exclusive coordinates when shifted to 
the first quadrant.  

Fifty-seven strain gages were bonded to the plate. 

Twelve (i.e., gages 21, 22, 24, 26, 29, 30, 32, 33, 34, 
36, 37 and 38) out of the 57 gages malfunctioned, 
leaving 45 useful strain inputs (Table 1). Since all 
gages were mounted and the plate was tested at 
room temperature, no dummy gages were 
employed. 

Table 1 lists the individual gage details and 
locations. Fig. 2 shows the strain-gaged region of the 
front face of the plate. The back face was similarly 
gaged. The x- and y-coordinates in Table 1 are to the 
center of the active portion of the gages. They are 
relative to an origin at the bottom right corner of the 
plate in Fig. 2. The numbers on the respective terminal 
tabs in Fig. 2 correspond to identification numbers of 
Table 1. Gage 57 of Table 1 was bonded on the 
transverse round boundary of the hole at θ = 0° in  
Fig. 2. 

The instrumented plate was incrementally tested in 
a model 1000 universal Instron screw-driven testing 
machine (Fig. 3). Strains were recorded at several 
discrete increasing and decreasing load levels. 
Reported results are for F = 4,448.2 N (1,000 lbs); σo= 
13.8 MPa (2,000 psi).  
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Table 1  Gage numbers, information and locations relative to lower-right hand corner of Fig. 2. 

Gage number Gage factor Resistance (Ω) x (mm) y (mm) 
1 2.070 ± 0.5% 120.1 2.39 137.31 
2 2.070 ± 0.5% 120.0 6.76 137.31 
3 2.070 ± 0.5% 120.0 11.13 137.31 
4 2.070 ± 0.5% 120.1 36.12 130.18 
5 2.070 ± 0.5% 119.8 40.49 130.18 
6 2.070 ± 0.5% 119.9 45.24 130.18 
7 2.060 ± 0.5% 119.8 1.60 147.65 
8 2.060 ± 0.5% 119.9 5.56 147.65 
9 2.060 ± 0.5% 119.8 10.31 147.65 
10 2.060 ± 0.5% 119.9 37.31 139.70 
11 2.060 ± 0.5% 1200 41.28 139.70 
12 2.060 ± 0.5% 119.9 45.24 139.70 
13 2.130 ± 0.5% 119.7 46.84 135.33 
14 2.130 ± 0.5% 119.9 42.47 135.33 
15 2.130 ± 0.5% 119.8 37.31 135.33 
16 2.130 ± 0.5% 119.7 12.70 145.26 
17 2.130 ± 0.5% 120..0 7.95 145.26 
18 2.130 ± 0.5% 119.8 3.18 145.26 
19 2.040 ± 1.0% 119.0 24.61 158.34 
20 2.040 ± 1.0% 120.1 26.59 158.34 
23 2.040 ± 1.0% 119.5 32.94 158.34 
25 2.040 ± 1.0% 119.5 37.31 158.34 
27 2.040 ± 1.0% 119.3 41.28 158.34 
28 2.040 ± 1.0% 119.5 43.26 158.34 
31 2.040 ± 1.0% 119.6 13.89 125.43 
35 2.040 ± 1.0% 120.0 22.63 125.43 
39 2.060 ± 0.5% 119.9 21.03 155.58 
40 2.060 ± 0.5% 119.8 25.40 155.58 
41 2.060 ± 0.5% 119.8 30.18 155.58 
42 2.130 ± 0.5% 120.1 38.89 156.36 
43 2.130 ± 0.5% 120.1 42.88 156.36 
44 2.130 ± 0.5% 119.9 46.84 156.36 
45 2.130 ± 0.5% 120.0 38.51 127.79 
46 2.130 ± 0.5% 120.1 42.88 127.79 
47 2.130 ± 0.5% 120.1 19.84 118.26 
48 2.060 ± 0.5% 119.9 23.82 118.26 
49 2.060 ± 0.5% 119,8 28.58 118.26 
50 2.060 ± 0.5% 119.8 1.60 163.532 
51 2.060 ± 0.5% 119.8 6.35 163.53 
52 2.060 ± 0.5% 119.9 10.72 163.53 
53 2.060 ± 0.5% 119.7 14.68 163.53 
54 2.060 ± 0.5% 120.0 2.39 109.93 
55 2.060 ± 0.5% 120.2 6.76 109.93 
56 2.060 ± 0.5% 120.1 11.13 109.93 
57 2.130 ± 0.5% 120.3 15.37 139.70 
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Fig. 2  Bonded strain gages showing gage numbers corresponding to Table 1 (front face). 

 

49,   48,   47 

56,   55,   54 

6,      5,     4 

12,   11,   10 

44,  43,   42 41,  40,   39 

9,    8,     7 

3,    2,     1 

x 

y 



Full-Field Stress Analysis of Perforated Members from Aligned Single-Element Strain Gages 

 

35 

 
Fig. 3  Instrumented specimen being tested in Instron Machine. 
 

4. Data Processing and Number of 
Coefficients 

Since the plate is symmetrical about both x- and 
y-axes, all gage locations are identified in the first 
quadrant in Fig. 4 where the physical dimensions are 
normalized with respect to the radius of the hole.  

Eq. (7) can be written in matrix form as Eq. (8) and 
the unknown Airy coefficients evaluated from the 
measured yyε  strains from Eq. (9) using least 
squares. Item  
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or, in simplified form, 

1 1[ ] { } { }m k k mA c d× × ×=

 

(9) 

[A] is an m (number of input strains, i.e., m source 
locations in Fig. 4) by k (number of Airy coefficients) 
matrix containing a set of m linear strain equations 
involving k independent variables. Vector {c} contains 
the k unknown Airy coefficients, and vector {d} 
consists of the m measured strains corresponding to 
the strain equations in matrix [A]. Since there are more 
equations than unknowns, i.e., m > k, least-squares is 
utilized to solve the over-determined matrix 
expression Ac = d of Eqs. (8) and (9). Knowing the 
values of the Airy coefficients (c0, bn, and dn), the 
individual components of stress are available from 
Eqs. (2)-(6). 

The root mean square, RMS, difference between the 
processed/reconstructed, {d’}, and recorded, {d}, 
strains, and the condition number, C, of matrix [A] 
were used to assess how many coefficients to retain 
(Figs. 5 and 6). The condition number, C, of matrix [A] 
measures the sensitivity of the solution of the system 
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of linear expressions of Eq. (8). It indicates the 
accuracy of the results from the matrix inversion and 
the linear equation solution. A low condition number 
is desired. Whereas Fig. 5 shows little change for at 

least 7 ≤ k ≤ 21, the condition number results suggest 
k ≤ 7 for reliable solutions. Results will be based on k 
= 7 and N = 6. However, Ref. [7] contains details 
which support also using k = 13. 

 

 
Fig. 4  Normalized gage coordinate locations of the 45 active gages. 
 

 
Fig. 5  Plot of RMS vs. number of coefficients, k, for m = 45 input values. 
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Fig. 6  Plot of log10(C) vs. number of coefficients, k, for m = 45 input values. 
 

5. FEA (Finite Element Analysis) 

A FEA was conducted whose results will be 
compared with those from strain gages. Since the plate 
is symmetric about both x- and y-axes, a 
quarter-model was analyzed. Isoparametric elements 
(ANSYS element type: Plane-82) having 8 nodes per 
element were employed. The mesh was refined until 
the ANSYS results did not vary more than 0.1% on 
the periphery of hole. The final mesh covering the one 
quarter of the plate utilizes 6,700 elements and 20,473 
nodes. A far field stress of 13.79 MPa = 2,000 psi was 
applied at the ends of the numerical model. Ref. [7] 
contains additional FEM details. 

6. Results 

Upon evaluating the Airy coefficients (c0, bn and dn, 
for N = 6) from Eq. (9) and the measured strains, 
individual components of stress and strain were 
obtained from Eqs. (2)-(7). Results are based on all 45 
gages as well as for just 41 gages (ignoring the input 

from gages 10 through 12 and 57 of Table 1 and Figs. 
2 and 4). These results from the 45 gages are 
compared with those from FEA (ANSYS) and discrete 
strains (from gages 10, 11, 12 and 57) in Figs. 7-12 
and Table 2. Measured strains are normalized with 
respect to the far field strain, ε0 = 200 𝜇𝜇𝜇𝜇 (based on 
the applied load, F = 4,448.2 N, gross area of 50.8 × 
6.35 = 322.58 mm2 and E = 69 GPa) and physical 
stresses are normalized by 𝜎𝜎𝑜𝑜 =  13.79 MPa.The 
physical dimensions associated with Figs. 9, 11 and 12 
are plotted normalized with respect to the hole radius, 
R = 10.04 mm. Figs. 7 and 10 contain results on the 
edge of the hole, while Figs. 8, 9, 11 and 12 illustrate 
the situations away from the hole. The ability to 
provide stresses away from the hole can be important 
since the worst situation need not occur on the edge  
of holes or notches in orthotropic or functioning 
graded materials [8]. Results based on processing  
the recorded strains of the reliable 45 gages of Table 1 
and Figs. 2 and 4 with the stress function agree   
well with those from FEM and the four discrete gages 

 

 
Fig. 7  Plot of εyy/ε0 along boundary of hole from strain-gage evaluated Airy coefficients for k = 7 coefficients (m = 45 
strain-gage input values) and ANSYS. 
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Fig. 8  Plot of εyy/ε0 along r/R = 2 from strain-gage evaluated Airy coefficients for k = 7 coefficients (m = 45 strain-gage input 
values) and ANSYS. 
 

 
Fig. 9  Plot of εyy/ε0 along AB of Fig. 1 from strain-gages (reconstructed using the evaluated Airy coefficients and discrete 
gages) for k = 7 coefficients (m = 45 strain-gage input values) and ANSYS. 
 

 
Fig. 10  Plot of σθθ/σ0 along boundary of hole from strain-gage evaluated Airy coefficients for k = 7 coefficients (m = 45 
strain-gage input values) and ANSYS. 
 

 
Fig. 11  Plot of σyy/σ0 along AB of Fig. 1 from strain-gage evaluated Airy coefficients for k = 7 coefficients (m = 45 strain-gage 
input values) and ANSYS. 
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Fig. 12  Plot of σxx/σ0 (= σrr/σ0) along AB of Fig. 1 from strain-gage evaluated Airy coefficients for k = 7 coefficients (m = 45 
strain-gage input values) and ANSYS. 
 

Table 2  Normalized strains, εyy/ε0 at discretely measured positions along line AB and those evaluated using the known Airy 
coefficients (m = 41). 

  Normalized strains evaluated using Airy’s stress function 
x/R Individual strain gages Number of coefficients, k = 7 and m = 41 Number of coefficients, k = 13 and m = 41 
1.0 3.70 3.61 3.69 
1.19 2.42 2.42 2.41 
1.58 1.55 1.55 1.54 
1.98 1.26 1.26 1.25 
 

(gages 10 through 12 and 57) along line AB of Fig. 9. 
Although the ANSYS-predicted and strain-gage based 
stresses disagree along line AB in Fig. 12 for 
increasing x/R, these numbers are comparatively 
small. 

7. Further Validation of Results 

The results of Figs. 7-12 are based on the strains 
associated with the 45 gage locations of Fig. 4. As 
previously implied, this number of input values was 
subsequently reduced from 45 to 41 by omitting the 
four recorded strains (from gages 10 through 12 and 
57) along line AB as input for evaluating the unknown 
Airy coefficients. Using the remaining 41 input values 
and k = 7 or 13, the normalized strains (εyy/ε0) were 
evaluated [7]. Table 2 shows very good agreement 
between the discretely measured strains from the four 
individual gages (gages 10 through 12 and 57 of Fig. 2; 
i.e., 1.0 ≤ x/R ≤ 1.98 in Table 2) and those computed at 
those four locations but based on strains recorded at 
the other 41 locations and processed using the Airy 
stress function. These results further validate the 
reliability of this hybrid technique.  

8. Summary, Discussion and Conclusions 

The paper’s novelty is the demonstrated ability to 
determine the three independent components of stress 
at and throughout the neighborhood of a cutout in 
engineering members from only discretely measured 
aligned uniaxial strains. The latter were recorded with 
single-element strain gages and processed using an 
Airy stress function and least-squares. Rational 
methods were employed to assess how many Airy 
coefficients to retain. Reliable results are obtained 
using either 41 or 45 measured uniaxial strains and as 
few as seven Airy coefficients. However, results differ 
little whether one uses 7 or 13 Airy coefficients. Since 
the most important stresses in orthotropic composite 
or functionally graded materials need not occur at a 
hole or notch, results include those away from the 
edge of the hole. 

The present approach benefits from using 
single-element strain gages. Although stacked rosettes 
circumvent the challenge that strains from different 
elements of a flat, multi-gage rosette does not occur at 
a common point, the upper elements of stacked rosettes 
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can provide incorrect data due to shear lag. The ability 
to avoid needing 2-or 3-element rosettes is particularly 
attractive if one wishes to use semiconductor or 
high-temperature strain gages. Such gages tend to be 
commercially prevalent only in single-element format. 
Thermally induced strains can occur in the gages if a 
gaged member operates at a temperature other than 
that at which the gages were applied. A common 
means of removing such strains is to employ dummy, 
as well as the active, strain gages. Being able to 
determine the complete stress fields using single-element 
gages rather than multi-element rosettes can greatly 
simplify the wiring, recording and data processing 
situations when employing dummy gages.  

The present example fully stress analyzes the plate 
of Fig. 1 at and beyond the hole. In some cases the 
interest might be to obtain the stress only at the known 
location of the most serious situation on the edge of a 
cutout. This can be achieved sometimes by bonding a 
small strain gage on the transverse edge of the 
member at that position, e.g., like gage 57 of Table 1. 
However, this might not be feasible if the member is 
very thin or if the radius of curvature at the desired 
location is extremely small. Moreover, the location of 
the most serious stress on the edge of a cutout in an 
orthotropic composite material might not be known. 
The present ability to obtain stresses at re-entrant 
corners from strain gages well away from such 
geometric discontinuities overcomes such challenges. 

Photomechanics can be effective for stress 
analyzing members. However, in addition to 
necessitating optical access to the member of interest, 
particularly industrial organizations are probably more 
likely to be better equipped and experienced using 
strain gages than optical methods.  

The developed technology is demonstrated for a 
circular hole in a rectangular tensile aluminum plate 
but is applicable to more complicated geometries, 
orthotropic composites and even in-plane fatigue 
loading. Provided the loading is sufficiently slow to 
ignore dynamic effects, the method could potentially 
serve as an inspection tool by visually displaying a 
relevant plot such as the strain-gage results of Fig. 9 
with time. The applied load could also be determined 
by integrating the longitudinal stress such as that of 
Fig. 11 across the width of the plate. 
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