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Everyone Wants to Play With Stats. Will Statistics Play a Key 

Role in an Everything-Is-AI World? 
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What is the role and place of statistics in modern artificial intelligence and machine learning? This paper surveys 

some currently fashionable topics in Artificial Intelligence (AI) and related fields, namely Machine Learning (ML). 

Moreover, it tries to outline how statisticians can contribute to AI. The paper reflects personal opinions and 

perspectives I gained working as a Chief Data Scientist in an international consulting firm that focuses on data 

analytics. 
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Introduction 

In this paper, the context is machine learning models deployed in a production environment to support 

everyday business. These models are currently used to face a series of complex problems. For instance, 

complex deep neural architectures allow forecasting the power demand at the smart-meter level for utilities 

distributing gas or electricity. Dynamic cohort approaches are used to predict customer lifetime value. 

Reinforcement learning can optimize bioprocesses and aid in implementing dynamic treatment regimes. 

Predictive models are used to obtain a preview estimate of margins from different type of products and services 

in banks, both for financial monitoring and to put in place corrective actions when needed. However, these 

examples do not refer to situations in which the statistical profession has a well-defined role, such as clinical 

trials design and analysis or statistical quality control. I aim to provide a broad selection of current research 

lines and machine learning applications, highlighting the role of statistical science. 

The recent rebirth of machine learning and artificial intelligence as fashionable topics, with a strong 

emphasis on technology, elicits a question: what is, or could be, the role of statistics in this context? Of course, 

I am referring to statistics as a specific subject and statisticians as specific professionals because statistical 

methods are pervasive, and everyone wants to play with stats. Is the statistical profession destined to become 

irrelevant in the context of ML? I found an analogy looking at mathematics translated into engineering. When 

engineering a mathematical solution, we tend to forget the underlying theory: the focus shifts on the physical 

object rather than the first principles motivating the mathematical theory. As Chief Data Scientist of SDG 

Group, I constantly face the tension between technology-oriented and scientific-oriented thinking. The main 

effort is to merge these approaches to a balanced synthesis, with the additional goal to produce sustainable and 

profitable business results. Statistics found its way as the backbone to strengthen the scientific method in 

disciplines where it was already used and extend it to other, most difficult disciplines. The statistical science on 
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the practical ground develops methods to quantify uncertainty in mathematical models based on data and make 

inferences leveraging these models. I try to stand at the crossroad between business and scientific viewpoints. 

Production-level AI models support many real-life applications. However, classical statistical modeling 

entails a process and a methodology that still is essential in modern machine learning pipelines. Thus, among 

other disciplines, statistics is a key subject in the present and future development of ML. See Ball (2015) for an 

interesting analysis about data science and statisticians. 

Why Should I Trust you? Interpret, Explain, and Establish Causality 

One of the most impressive facts in recent years has been the renaissance of (deep) neural networks and 

the swift growth of deep learning, which is not only motivated by the scientific relevance of the subject per se 

but also by its undeniable flexibility in applications. Deep learning builds complex nonlinear maps from input 

to a target variable by combining multiple latent input representations. Without entering the details of the 

various types of deep neural networks (e.g., convolutional, recurrent, graph neural networks, and combinations 

of these architectures) commonly used in both supervised and unsupervised problems, it is worth noticing that 

many statistical issues in deep learning remain unexplored. The first issue, essential to many applications, 

concerns interpretability, explainability, and causal inference. A second related aspect is that of uncertainty 

assessment and inference. 

Interpretability, explainability, and causal inference are related aspects of the requirement of humans to 

understand the results produced by complex models. Several methods cover the three aspects mentioned before, 

e.g., Locally Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). 

However, what skills are required to interpret and understand the explanations yielded by the model? The  

target audience is the data science and data analysis communities, not final users not acquainted with working 

with data from a statistical viewpoint. Indeed, complex models are not directly interpretable and explainable 

even to the eye of the researcher that devises them or for the data scientist that builds a specific model for a 

given case. In my experience, when interpreting the model’s output is a requirement, the explainability    

layer offered by the model has to be integrated with specific documentation and formation to allow final users 

(e.g., medical doctors) to gain insight into results. This latter observation is a critical success factor in 

applications, regardless of the model’s performance. In this realm, statistical science, which has a unique 

tradition and expertise in communication and working with the scientific and business communities, might 

have a significant role in improving interpretation and explanation of models, creating interfaces directed to 

final users, and finally, establishing internal and external validity of the results. Recall that internal validity 

means structural validity, for instance study design, and external validity means applicability of results to more 

general contexts. 

Miller (2019) describes the explainability issue as follows: “The very experts who understand 

decision-making models the best are not in the right position to judge the usefulness of explanations to lay 

users” (p. 4)—a phenomenon that Miller (2019) refers to (paraphrasing Cooper (2004)) as “the inmates running 

the asylum”. Therefore, a strong understanding of how people define, generate, select, evaluate, and present 

explanations seems almost essential. 

Devising ways to communicate results obtained through complex models to final users would be a step 

further towards providing users with a better understanding and acceptance of results. Hopefully, it should 

avoid the “I want a significant p-value attitude” so deeply rooted in scientists and scientific journal (especially 
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medical) reviewers. Moreover, when addressing the problem of AI explainability, it is important to distinguish 

between local explanations, which try to tell us why particular facts occurred, and explanations establishing 

causality on a more global level, thus related to more general relationships, such as those involved in the 

scientific method. 

Explainability involves different actors with different goals and perspectives, the picture below, gives an 

example well-suited for the financial and pharmaceutical industry. 
 

 
Figure 1. AI according to professional role. 

 

Many explainable methods proposed tend to miss a proper uncertainty quantification. Statistics have 

already successfully contributed to modern data analysis. For instance, statistical tests and uncertainty 

quantification in Topological Data Analysis have been introduced by Wasserman (2018). 

Thus, in the world of AI and big data—somewhat dominated by software development and 

coding—statistical science can have a central role in Machine Learning operations (MLOps), and data science 

leveraging methods rooted in the statistician mindset to solve interpretability problems in original and 

principled ways. 

In current ML pipelines, the most common way to carry out causal inference is by using counterfactuals. 

However, defining a counterfactual in observational data with hundreds of variables is not straightforward. See 

Chou, Moreira, Bruza, Ouyang, and Jorge (2021). Miller (2019) describes the missing link between the current 

research on explanations from the fields of philosophy, psychology, and cognitive science. According to him, 

there are three main aspects that AI systems have to achieve full explainability: (1) people seek explanations 

that answer the following question: why some event happened, instead of another? i.e., counterfactual 

explanations; (2) recommendations can focus on a selective number of causes (not all of them), which suggests 

the need for causality in AI (the user should not be overwhelmed by potential causes); and (3) explanations 

should consist in conversations and interactions with a user promoting user engagement. 

Figure 2 proposes some examples of explanatory methods. Figures 2a, 2b, and 2c present methods where 

explainability is for experts, although, once provided with the right hints, the method in Figure 2b could be 

understood also by users that domain experts, rather than data scientists or statisticians. The method presented 

in Figure 2d is much more accessible also to general users. 

A taxonomy of explainable artificial intelligence has been proposed by Belle and Papantonis (2021). 
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An interesting branch is causal transfer learning (Mooij, Magliacane, & Claassen, 2020), based on a paradigm 

called Joint Causal Inference and Structural Causal Models. Another approach is that of deconfounder proposed 

by David Blei and Yixin Wang (Wang & Blei, 2020). Both methods are suitable for multiple cause problems.  

Another interesting approach to causal analysis is the Targeted Minimum Loss Estimation framework. 

This framework assumes that no model is best when working with complex data sets. Therefore, first, an 

ensemble method (SuperLearner) is proposed. Then, a plug-in estimator is obtained for the causal parameter. 

The ensemble is not composed by many perturbed executions of the same algorithm, as occurs, for instance, in 

random forest, gradient boosting machine, and XGboost, but by a set of algorithms selected just because of 

their heterogeneity. The key idea is that such diverse algorithms could best represent different aspects of the 

data. We improve the performance of each method by considering a weighted combination of the ensemble. 

Weights are obtained via a generalized cross-validation process. An example of a model set might be random 

forest, logistic regression, naïve Bayes, K-NN, Xgboost, and CART. 

In more detail, when considering interpretability and explainability, we can consider three main 

perspectives, namely, predictive accuracy, descriptive accuracy, and relevancy. Predictive accuracy is easy to 

measure using consolidated methods and metrics, e.g., classification matrices (confusion matrices) and ROC 

curves. Descriptive accuracy can be described as the degree to which an interpretation method objectively 

represents the relationships learned by the ML models. Relevancy: An interpretation is relevant if it provides 

insight into a particular user type and given problem.  

While descriptive accuracy is currently a popular topic: many researchers are trying to devise methods to 

understand better the representation learned by the model, in particular, with some new approaches based on 

advanced mathematics, as we shall discuss in the next section. Relevancy is harder to define and formalize. The 

long and somewhat unique consulting practice that characterizes the statistical profession might contribute to a 

better understanding of complex models, especially when considering relevancy. 

In summary, complex models require specific tools and methods to allow data scientists and analysts to 

disentangle, even partially, how and why the models behave in a determined fashion. Most of the time, final 

users are not in a position to use the output of such tools. Still, conveying the message to them is essential for 

the acceptance and real-world applicability of the deep learning models. I believe statistical methods can be 

fundamental in paving the road to new methods improving the existent explainability techniques, and creating 

original interfaces to communicate the results yielded by these techniques.  

Subject-Mixing and Deep Math for Deep Learning 

Subject-mixing is not simply the fact that many different skills and backgrounds contribute to machine 

learning/AI (e.g., computer science, statistics, mathematics), but that heterogeneous approaches are necessary 

to justify and better understand the dynamics underlying complex models. In this endeavor, pure mathematics 

is making its appearance. See, for instance, “Deep Learning: A Statistical Viewpoint” (Bartlett, Montanari, & 

Rakhlin, 2021) and “Geometric Deep Learning: Grids, Groups, Graphs Geodesics and Gauges” (Bronstein, 

Bruna, Cohen, & Velickovic, 2021). The first sentence of the text clearly explains the perspective of the paper:  

While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not 
generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of 
the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be 
applied throughout a wide spectrum of applications. (Bronstein et al., 2021, p. 8) 
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The blueprint of geometric deep learning is summarised in the following scheme, where each group 

provides the invariance/equivariance property relevant to the specific neural network architecture. 
 

Table 1 

Main Geometrical and Algebraic Associated With Deep Neural Networks Architectures 
NN Architecture Domain Ω Symmetry Group G 

CNN Grid Translation T 

Spherical CNN Sphere/SO(3) Rotation SO(3) 

Intrinsic/Mesh CNN Manifold Isometry Iso(Ω)/Gauge Symmetry SO(2)

GNN Graph Permutation Σn 

Deep Sets Set Permutation Σn 

Transformer Complete Graph Permutation Σn 

LSTM 1d Grid Time warping 
 

The key notions in what is called Geometric Deep Learning consist of the geometric principles of 

Symmetry, Geometric Stability1, and Scale Separation. In descriptive terms, they imply that while the target 

function f might depend on complex interactions between features over the whole domain, leveraging 

locally-stable functions, it is possible to separate the interactions across scales. This separation first focuses on 

localized interactions that are then propagated towards coarser scales. Convolutional filters followed by pooling 

layers are an example of a multi-scale decomposition-reconstruction process. These principles are analogous to 

those underlying the multi-scale analysis in low-dimensional problems, the prototype being the wavelets that 

overcome limitations of Fourier analysis in representing local invariance. 

More formally, the family of linear equivariant operators2 provides a powerful tool since it enables the 

construction of rich and stable features by composition with appropriate non-linear maps. Let us consider a 

symmetry group G, a data domain Ω, if B: X(Ω,C) → X(Ω,C’) is G-equivariant, i.e., B(g.x) = g.B(x) for all x 

∈ X and g ∈ G and σ: C’ → C” is an arbitrary (non-linear) map, then we can verify that the composition U: 

= (σ o B): X(Ω,C) → X(Ω,C”) is also G-equivariant, where σ: X(Ω,C’) → X(Ω,C”) is the element-wise 

instantiation of σ given as (σ(x))(u): = σ(x(u)). 

This simple property allows us to define a very general family of G-invariants by composing U with the 

group averages A o U: X(Ω, C) → C”. A natural question is thus whether any G-invariant function can be 

approximated at arbitrary precision by a specified deep neural network model for appropriate choices of B and 

σ. It is possible to adapt the standard Universal Approximation Theorems from unstructured vector inputs to 

show that shallow “geometric” networks are universal approximators by properly generalizing the group 

average to a general non-linear invariant. However, in analogy with the case of Fourier versus Wavelet 

invariants, there is a fundamental tension between shallow global invariance and deformation stability. This 

                                                        
1 With real data, we cannot speak of exact invariance and equivariance under group actions, so the weaker notion of deformation 
stability (or approximate invariance) is introduced:  
where 　(　)x(u) = x(　-1u) as before, and where C is some constant independent of the signal x. A function f ∈ F(X(　)) 
satisfying the above equation is said to be geometrically stable.  
2 A function f: X(　) → Y is said to be G-invariant if f(　(g)x) = f(x) for all g ∈ G and x ∈ X, that is the group action is not 
affecting the output of f. An example of invariance is shift-invariance, arising in computer vision and pattern recognition 
applications such as image classification. A function f: X(　) → X(　) is G-equivariant if f(　(g)x) = 　(g)f(x) for all g ∈ G, 
that is, group action on the input affects the output in the same way. A Convolutional layer of CNNs is not shift-invariant but 
shift-equivariant. Then, image classification is usually implemented as a sequence of convolutional (shift-equivariant) layers, 
followed by global pooling (which is shift-invariant). 
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tension motivates an alternative representation, which considers instead localized equivariant maps. Assuming 

that Ω is further equipped with a distance metric d, we call an equivariant map U localized if (Ux)(u) depends 

only on the values of x(v) for Nu = {v: d(u,v) ≤ r}, for some small radius r; the latter set Nu is called the 

receptive field. 

Summarising, the geometry of the input domain, with knowledge of an underlying symmetry group, 

provides three key building blocks: (i) a local equivariant map, (ii) a global invariant map, and (iii) a coarsening 

operator. These building blocks provide a rich function approximation space with prescribed invariance and 

stability properties by combining them in a scheme referred to as the Geometric Deep Learning Blueprint. In 

practice, composing equivariant functions with coarsening operators in a sequence of layers provides the high 

predictive accuracy of deep neural networks in a wide range of problems. This predictive ability is an apparent 

violation of Occam’s principle and of common view that overparameterized models are going to overfit data, 

an interesting point of view to be further explored is that this is due to geometric structures imposed by the 

network architecture. 

The statistical view takes another perspective that is illustrated using one of the introductory sentences of a 

paper of Bartlett et al. (2021) providing a statistical view of deep learning: 

The second surprising empirical discovery was that these models are indeed outside the realm of uniform convergence. 
They are enormously complex, with many parameters, they are trained with no explicit regularization to control their 
statistical complexity, and they typically exhibit a near-perfect fit to noisy training data, that is, empirical risk close to zero. 
Nonetheless, this overfitting is benign, in that they produce excellent prediction performance in a number of settings. 
Benign overfitting appears to contradict accepted statistical wisdom, which insists on a trade-off between the complexity 
of a model and its fit to the data. Indeed, the rule of thumb that models fitting noisy data too well will not generalize is 
found in most classical texts on statistics and machine learning. (Bartlett et al., 2021, p. 3) 

Here the justification is sought in statistical arguments about implicit regularization, VC-dimension, and 

functional analysis (Reproducing Kernel Hilbert Spaces).  

The key points are expressed with a sentence contained in the abstract of the paper of Bartlett et al (2021): 

“We conjecture that specific principles underlie these phenomena: that over-parametrization allows gradient methods 

to find interpolating solutions, that these methods implicitly impose regularization, and that over-parametrization 

leads to benign overfitting, that is, accurate predictions despite overfitting training data” (p. 1). 

Belkin (2021) treats this problem from a more formal perspective, while Dar, Muthukumar, and Baraniuk 

(2021) give a survey of the topic. Belkyn distinguishes between under-parameterized models with limited 

complexity and where the optimization landscape is locally convex around local minima, and 

overparameterized models where there are manifolds of potential interpolating predictors that fit the data 

exactly. In the latter case, the statistical question is understanding the nature of the inductive bias, i.e., what 

makes some solutions preferable to others despite all of them fitting the training data equally well. In 

interpolating regimes, non-linear optimization problems generically have manifolds of global minima. In most 

deep learning models optimization is non-convex, even locally, however, often they satisfy the so-called 

Polyak-Łojasiewicz (PL) condition guaranteeing convergence of gradient-based optimization methods. The 

peculiarity is pictorially presented as the so-called double-descent generalization curve. 

What is the Polyak-Łojasiewicz (PL) condition? It is a sufficient condition for efficient minimization by 

gradient descent. The PL condition is a simple first-order inequality applicable to a broad range of optimization 

problems. L(w) is μ-PL if the following holds: 
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Is there any chance to build a common ground for those approaches since they might be looking at the 

same things using different tools and perspectives? Recall that G. Perelman proved the Poincaré conjecture and 

the geometrization conjecture of Thurston, two topological-geometric problems, using analytical methods 

based on the Ricci Flows. 

Subject-mixing implies different mindsets, is one of them prevailing? Is it unavoidable? Or a better 

balance creating a “collective mindset” or “consensus mindset” will be most productive and fair? In the 

following, I touch on some relevant points to the statistical practice in the business environment. 
 

 
Figure 4. Double descent generalization curve. The interpolation threshold separates modern and classical regimes. 
Train (blue line) and test errors (green line) versus model capacity.  

MLOps (Machine Learning Operations) 

At its core, MLOps is the standardization and streamlining of the machine learning-based models lifecycle. 

In other terms, MLOps is a systematic approach to building, deploying, and monitoring machine learning (ML) 

solutions. It is an engineering discipline that can be applied to various industries and use cases. Software 

development is interdisciplinary and is evolving to facilitate ML. MLOps is an emerging method to fuse ML 

with software development by integrating multiple domains as MLOps combines ML, DevOps, and data 

engineering, which aims to build, deploy, and maintain ML systems in production reliably and efficiently. Thus, 

MLOps can be expounded by this intersection. Ironically, statistics is not usually mentioned in MLOps, while 

MLOps are mostly based on statistical learning in real-world business processes. Of course, engineering also 

occupies a central role in MLOps, e.g., data management practices and software development. Still, MLOps’ 

core component is often a coordinated set of forecasting models to produce mass forecasting of products’ 

popularity or a clustering algorithm to build and maintain a customer segmentation. In my experience, the best 

results can be obtained by working as an integrated team since the beginning of any activity that aims to build a 

production system. Data scientists must be aware of the constraints and practicalities implied in a production 

ML pipeline. Data engineers and MLOps specialists need to understand the requirements and the features of the 

models developed and tested by data scientists. The tension between the engineering and data analytics 

(statistical) ways was in a certain sense anticipated by the famous paper of Breiman (2001). 
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A proposal I would like to present shortly is Bayesian workflow (Gelman et al., 2020) for ML-models 

development cycle and maintenance process. This method covers the core components of the MLOps workflow, 

citing the definition in the paper: “Bayesian workflow includes the three steps of model building, inference, and 

model checking/improvement, along with the comparison of different models, not just for the purpose of model 

choice or model averaging but more importantly to better understand these models” (Gelman et al., 2021, p. 3). 

In the paper, an extended Bayesian workflow is also mentioned. This workflow includes pre-data design of data 

collection and measurement and after-inference decision making. This latter task can be very complex in 

real-world business environments because it would imply being able to have access to the data collection phase. 

Deep Learning and Statistical Inference 

Deep probabilistic programming is already supported by Python libraries such as Pyro, Tensorflow 

probability (Edward2), PyMC. Without entering into details, it is essential to highlight the necessity of 

introducing uncertainty and inference in generic classes of ML models, particularly in deep learning. Currently, 

this is achieved via Markov Chain Monte Carlo or variational methods. These algorithms’ convergence and 

theoretical behavior applied to these hyper-parameterized models can be a fertile study ground for 

computational statisticians. 

AutoML 

In the current landscape of machine learning tools, there is another trend called AutoML.  

Machine learning (ML) has achieved considerable successes in recent years, and an ever-growing number of 
disciplines rely on it. However, this success relies on human-machine learning experts to perform manual tasks. As the 
complexity of these tasks is often beyond non-ML-experts, the rapid growth of machine learning applications has created a 
demand for off-the-shelf machine learning methods that can be used easily and without expert knowledge. We call the 
resulting research area that targets progressive automation of machine learning AutoML. (www.automl.org) 

Fully-fledged commercial products offer this feature and free, open-source tools: DataRobot, H20 to 

mention two of the most successful examples, but also cloud providers such as AWS, Google Cloud Platform, 

and Microsoft Azure, and hundreds of newcomers and start-ups. Among the most known non-commercial 

solutions, we could mention Tpot, AutoKeras, Auto-SkLearn, NNI (Neural Network Intelligence), and many 

others. These libraries and services rely on heuristics (e.g., Tpot uses genetic algorithms to search in the model 

space defined by the type of supervised problems) and grid search. Is it possible to inject statistical wisdom 

within such tools? What is not easy to do and still missing is the ability to critically appraise the results. Can a 

non-expert user leverage explainable methods afflicted, at least partially, by “the inmates are running the 

asylum” problem and have a significant impact on business processes? 

Active Learning, Human-in-the-Loop, Expert-Augmented Machine Learning 

These topics are related and aim to embed human-expert knowledge in the machine learning process to 

refine and validate results. Human-in-the-loop approaches and active learning are based on uncertainty and 

diversity sampling, and combination. The two types of sampling strategies aim to improve the model’s 

performance. Uncertainty Sampling is a strategy for identifying unlabeled items in the proximity of the decision 

boundary learned by an ML model. Indeed, these points have a higher chance of being misclassified. Diversity 

Sampling is a strategy for identifying unlabeled items unknown to the ML model in its current state. This 

strategy typically identifies items that contain combinations of feature values that are rare or unseen in the 
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training data. The aim is to obtain a complete picture of the problem space. For a comprehensive presentation 

of the subject one could consider the book of Munro (2020).  

Another interesting approach has been recently proposed in the statistical community: Expert-Augmented 

Machine Learning. We will not delve into the details and simply provide the schematic representation proposed 

in (Gennatas, Friedman, Ungar, Pirracchio, Eaton, Reichmann, Interian, Luna, Simone, Auerbach, Delgado, 

van der Laan, Solberg, & Valdes, 2020). In brief, RuleFit algorithm extracts a set of rules, experts rank the 

rules using judgment, the ranking is compared with the empirical ranking, rules that are in strong disagreement 

in the two rankings are penalized. 

Digital Twins, Surrogates 

A surrogate is a substitute for the real thing. In statistics, drawing from predictive equations derived from 

a fitted model can surrogate for the data-generating mechanism. If the fit is good-model flexible yet 

well-regularized, data-rich enough, and fitting scheme reliable, then such a surrogate can be valuable. 

Gathering data is expensive, and sometimes getting precisely the data one wants is impossible or unethical. A 

surrogate could represent a much cheaper way to explore relationships and perform, for instance, what-if 

analysis. How do surrogates differ from ordinary statistical modeling? One superficial difference may be that 

surrogates favor faithful yet pragmatic reproduction of dynamics over other statistical models: interpretation, 

establishing causality, or identification. As one might imagine, that characterization corresponds to an 

oversimplification of the problem at hand. 

A digital twin is a virtual representation of an object or system that spans its lifecycle, is updated from 

real-time data, and uses simulation, machine learning, and reasoning to help decision-making.  

This process means creating a highly complex virtual model that is the exact counterpart (or twin) of a 

physical thing. The “thing” could be a car, a building, a bridge, or a jet engine. Connected sensors on the 

physical asset collect data and send them to the virtual model. Anyone looking at the digital twin can now 

access crucial information about the state of its real counterpart. 
 

 
Figure 5. Expert-Augmented Machine Learning framework illustrated. 

Why Should I Trust You? Cognitive Science and Psychology Perspective 

This section reconnects with Section 2, first, from a more practical point of view. Then, I shall leverage a 

more theoretical perspective based on the already cited work of Miller in the attempt of “closing the loop” 

started in the sections above. 

When is deep understanding and acceptance of field experts most relevant? Short-term operational 

predictions in non-life-threatening and non-disruptive applications (no time to assess, just good if right and 
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judged on the practical ground or based on subject-expert acceptance). Examples are image and video 

classification, automatic adjustment of heating parameters in a district heating network, and other automatic 

actions in a smart city context. 

On the other hand, if we consider predictions in life sciences, these cannot be accepted if not understood 

and justified using biological or medical arguments. The same occurs in manufacturing and other fields where 

the final responsibility of decisions and consequent actions are to be taken by humans. 

Let us consider a real case in pharmaceutical production. Modern pharmaceutical manufacturing processes 

benefit from many gauging instruments and sensors to monitor process variables and the quality and 

characteristics of the products. Process engineers can understand significant problems associated with a limited 

number of variables obtained by such tools. The base of a new project was the idea that some process 

executions deviate from the best conditions because of complex interactions between many variables or 

unforeseen conditions. The first step was to define the “best conditions” for a given process, besides the fact 

that according to Good Manufacturing Practices, processes are to be validated, and strict constraints apply to 

many outputs of the process. A pragmatic approach was taken: the best conditions were defined by first 

considering the set of parameters’ values during the process executions that gave correct output. Then, each 

variable’s median trajectory was set as the “reference conditions”. 

The discrepancy from reference conditions was computed in two ways: (1) using a longitudinal version of 

the k-means clustering to detect differences in values; (2) using a permutation distribution clustering to detect 

differences in shape. A significant achievement was to discover anomalous production cycles that showed no 

individually discernible deviation from reference but were instead associated either to multiple unexpected 

deviations or other inconsistencies that were not anomalous on a metric scale and were associated with strange 

shapes of the process variables (e.g., small oscillations around a perfectly normal value). The results were 

interesting from a data-analysis viewpoint, but to make them acceptable and useful to final users (process 

engineers), we had to devise and share with them a way to represent the results able to point out actionable 

versus not-actionable problems.  

On the other hand, in the case of predicting the class associated with an object using image recognition 

algorithms, the user is not usually interested in understanding the patterns of pixels behind the classification 

process. On the contrary, data scientists can be interested in achieving such an understanding. In applications 

such as image classification, video classification, and text categorization, a concept has emerged: transfer 

learning and domain adaptation. While transfer learning is instrumental in the just-mentioned cases, a question 

that could come to mind is whether it could be useful in other fields. The availability of large pre-trained neural 

networks like BERT, GPT-3, made a strong case for transfer learning. 

From more cognitive and social perspectives, see Miller (2019), I found interesting the analysis placed in 

the light of explainable AI. Its bases are (1) explanations are contrastive, based on counterfactual cases; (2) 

explanations are selected in a biased manner; (3) probability could do not matter; (4) explanations are 

social—they are a transfer of knowledge, presented as part of a conversation or interaction, and are thus 

presented relative to the explainer’s beliefs about the beliefs of the explanation’s recipient. So, according to 

Miller (2019):  

These four points all converge around a single point: explanations are not just the presentation of associations and 
causes (causal attribution), they are contextual. While an event may have many causes, often the explainee cares only 
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primarily in cost-saving. However, the ability to anticipate problems affecting final clients also reduces 

complaints and churn rate, although the latter is not easily measurable and, in any case, it would be measurable 

only on a long-time horizon. Network managers are interested in predictions and diagnostics about the cause of 

the problem. Thus, generating value involves translating client tickets associated with a given equipment, 

recognizing the problem, and establishing whether it could be fixed remotely (a software problem) or requires 

onsite maintenance. When a specific pattern can be associated with a well-defined problem, the network 

managers will ask to perform automatic diagnostic and, whenever possible, fix the issue with an appropriate 

piece of software. All these elements are required for a successful project: scientific validity, performance, 

interpretability, optimization of the network managers’ activities, economic value (cost savings and streamlined 

maintenance operations), reduction of customers’ complaints.  

Conclusions 

I have no ultimate solutions or clear views of the future. In this broad excursion, I hope to have provided 

some arguments to discuss and reflect on and pointers to current active research topics. 
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