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Abstract: This study aims to understand the distribution of reinforcement material in the matrix, evaluate the adherence between 
layers, and determine the air gap between printing roads. We printed the specimen with two different composite materials, Polylactic 
Acid (PLA) reinforced with acrylic particles, and another filament reinforced with short carbon fibers. For the observations of the 
samples, we used a Confocal Microscope. We estimated the porosity of the material by comparing the expected mass with that 
achieved after manufacture. By pixel count, after binarization, we found the average percentage of acrylate particulate. They showed 
fair distribution through the PLA matrix even after the manufacturing process. The determination of fibers alignment was made by 
binarization of image, together with k-means and edge detection. This combination of methods allows estimating the fiber alignment 
by orientation straight lines. The manufacturing process did not offer good alignment of the fibers, even with the filament initially 
well aligned. 
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1. Introduction 

Amid the advancement of industry 4.0, emerging 

technologies have gained many supporters; 3D 

printing is one of them. Due to its versatility and low 

cost for rapid prototyping and manufacturing 

applications, there has been an exponential increase in 

Additive Manufacturing (AM) technology demand. 

This technology allows the manufacture of 3D part 

layer-by-layer, directly from the project without 

necessarily creating specific tools for each part. These 

advantages and the possibility to manufacture 

complex structures and geometries in less time or 

impossible to create by other processes, with 

micrometer resolution, helped AM become a 

high-demand industry [1, 2]. 

A standard AM method is Fused Deposition 

Modeling (FDM); in this method, a thermoplastic 
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polymer’s continuous filament is fed through a nozzle 

and heated to reach a semi-liquid state extruded on the 

printer bed. This process, together with plane 

movement, generates one printed layer, a consecutive 

of layers form a 3D part [2]. 

FDM has an advantage over other AM processes 

due to the facility to obtain shelf raw material. It is 

easier to project, share and modify the CAD part; low 

cost; possibility to produce a complex geometry with 

an office-friendly environment (simplicity), making it 

more popular, accessible, and flexible, but there are a 

limited number of materials, most commonly used 

with thermoplastics. On the other hand, in general, the 

FDM final products have limited mechanical 

properties compared to injected materials and a 

layer-by-layer appearance with low surface quality. 

Variation in process parameters can generate a change 

in manufactured parts and, consequently, in the parts’ 

mechanical properties [3, 4]. Thus it is necessary to 

understand how the manufacturing process interferes 

with printed parts’ properties to allow an evaluation to 
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apply in high-level engineering projects. An option for 

obtaining better properties is composite materials 

because we can reinforce the polymeric matrix with 

short/long fibers, particulates, and nanoparticles that 

can significantly improve their properties, especially 

mechanical properties when reinforced with long fiber. 

However, the development of composite materials that 

meet the protocols’ manufacturing requirements is 

necessary [5].  

Particulate and short/long fibers are the most 

common types of reinforcements for the market’s 

composite material. This study focuses on both of 

them. Particulate composite has a range of 

applications with a different focus, including 

mechanical properties improvement [6]. 

2. Experimental Setup 

2.1 Materials and Procedures 

The materials PLAC, PLAPMMA, and PLA filaments, 

obtained from UP3D Brasil (Valinhos, SP, Brazil), 

were used on 3D printer Anet A8-M, equipped with a 

double-extruder for polymers, classifying the process 

as FDM. We bought the filaments with reinforcement, 

and the manufacturer informed a 15% of carbon fiber 

reinforcement and a range of 0-30% of 

polymethylmethacrylate (PMMA)reinforcement; this 

study was determined more accurately the percentage 

of particulate distribution [7, 8]. 

Was printed the specimen by following type I of 

ASTM D638 for future analysis of mechanical 

properties. Printing parameters were 100% infill with 

printer roads oriented at ±45º, the temperature at 

210 °C, layer height of 0.2 mm, a print speed of 50 

mm/s, and a printing table temperature of 60 °C. 

2.2 Test and Analysis 

We analyzed the samples with OLYMPUS LEXT 

OLS4100 confocal laser microscope, up to 200× 

magnification. In PLAC filaments, the properties 

observed were the diameter, length, and orientation of 

the carbon fibers disposed within the filament. In the 

PLAPMMA filaments, one can observe the particulate 

distribution. In printed samples, we observed the same 

characteristics to identify variation caused by the 

FMD process. The pure PLA sample was used as a 

basis to identify the matrix in the composite material 

images. 

We subjected the images obtained by microscopy to 

the binarization image processing code developed by 

the research group using the MATLAB software. It is 

useful in the characterization process because it 

simplifies regions of an image in black and white [9], 

highlighting the reinforcement of matrix and obtaining 

distribution information. 

The process to identify the fibers’ alignment was 

through binarization of the image to highlight the 

fibers, together with the k-means method, to cluster 

the pixels and edge detection to delimitate fiber 

borders. This combination of methods allows 

estimating the fiber orientation by straight lines 

(FOESL). The other properties, such as fiber diameter 

and length, were obtained using the confocal 

microscope software. 

3. Results and Discussions  

3.1 Voids and Adhesion between Layers 

This work shows how composite parts’ 

manufacturing process can present failure and 

manufacture problems through additive manufacturing 

of the FDM type. The evaluations of objects printed 

indicate a degree of porosity and irregularities. 

Fig. 1a shows the void regions (dark areas) of the 

printed part. However, to understand the formation of 

voids, a closer look is necessary for the manufacturing 

process. The print head movement, generating spaces 

between the printing roads, causes the occurrence of 

voids. The material flow is constant during printing, 

but the print head is accelerated, creating irregularities 

in the cord width [2].  

Thus the printed layer’s starting point is expected to 

have a greater degree of voids than in the other parts 

of the same layer due to the print head’s acceleration  
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hand, in parts manufactured by FDM with composites 

reinforced with short fibers, the fibers’ worst 

alignment is even if the filament has the fibers well 

aligned. Therefore, the FDM process with short fibers 

could not promote a good fiber alignment, at least 

without advanced controls of pressure in extruding 

head and polymer flow. 

This study presented aspects of composite parts’ 

production using 3D printing, showing some problems. 

However, identifying these anomalies adds knowledge 

for improved AM technology in composite materials, 

especially in projects that demand greater rigor. Future 

research needs to understand which parameter 

produces better fibers’ alignment and adhesion 

between matrix and fiber and understand how 

particulate and fiber concentration influence 

composite material optimization. 
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