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Abstract: The diffusion process are presents in many areas of the sciences and engineering, traversing horizontally the different 
thematic. It is possible to mention as example, the environmental impacts, and its influence on the chemical, the construction and 
food industry process, etc. The deep knowledge of the diffusion process, it is possible to make a beneficial use of them in different 
areas mentioned. So, also using the new knowledge is possible developed a model from the experimental data, that it can simulate all 
phenomena in which intervene the diffusion process. In order to analytic develop of model, it can use the quantum mechanic 
formalism to resolve the Fick’s equation. With all these acknowledge and de model, it can simulate wished situation of diffusion 
process to determine parameters and variables necessary in order to make more efficient and beneficial all diffuser process. 
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1. Introduction 

It is known as diffusion to the thermal motion of all 
particles in liquid or gas state, at determinate 
temperature T, entering another diffuser material. The 
speed of this movement is function of the temperature, 
the viscosity and the mass of the particles. The 

 

The diffusion is a physical and chemical process 
that are present in many areas of the sciences and 
engineering, traversing horizontally the different 
thematic. 

It is possible to mention as example, the 
environmental impacts that produce the acid rain, its 
roll on the cloud drop formation [1]. As well also, the 
influence on the chemical, the construction and food 
industry, etc. 

With the deep knowledge of the diffusion process, 
it is possible to make beneficial use of them in 
different areas of the science, the engineering and the 
industry. 

1.1 Diffusion Theory 
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diffusion phenomenon is to describe the net flow of 
the molecules from a region of higher concentration to 
a region of lower concentration, due to the pressure 
difference between them. Of course, if the 
concentrations are equals, the molecules keep moving, 
but the pressure gradient is null, then the diffusion 
process finish. The particles motion is governed to 
equilibrium process of auto diffusion due at the 
molecular random motion.  

The result of the diffusion process is a gradual mix 
of matter, in such a way that the distribution of 
molecules is uniform. 
On the equilibrium situation, the molecular motion is 

called “dynamic equilibrium”.  

The molecular diffusion is usually formalized 
mathematically using the Fick’s diffusion laws. These 
laws are the quantitative nature, formally represented 
to differential equations that describe these 
phenomena. Adolf Fick (1829-1901).    

(1) First Fick’s Law 
This law established the relation between the 

perpendicular diffusive flow at the determinate area, 
and the concentration in stationary state. The particle 
flux goes from the high concentration region to the 
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lower concentration area, with a magnitude that is 
proportional at the concentration gradient. 

In such case, under these concepts, the first Fick’s 
law has the mathematical form:  

𝑱𝑱 = −𝑫𝑫𝑫𝑫𝑫𝑫      (1) 
Where: 

D represents the proportionality constant, whose 
physical means are the properties of the diffuser 
material, it is known as diffusion coefficient. 

J is the particles diffusion flow, perpendicular to a 
certain area of the interesting study. 
𝑫𝑫𝑫𝑫 is the concentration gradient. 
(2) Second Fick’s Law 
Under the same concepts explained in the first 

Fick’s law, but operating mathematically, under the 
considerations of the mass conservation in all 
chemical reactions, it will obtain: 

𝝏𝝏𝑫𝑫
𝝏𝝏𝝏𝝏

= 𝑫𝑫𝛁𝛁𝟐𝟐𝑫𝑫    (2) 

The last Eq. (2) is very util to get its analytics 
solutions, conveniently applying the initials and 
boundary conditions. 

It is interesting to see, that the Eq. (2) had a full 
analogy with the Schrödinger’s differential equation 
of the quantum mechanics, to the free motion of the 
particles, whose expression is: 

𝝏𝝏𝚿𝚿
𝝏𝝏𝝏𝝏

= 𝒊𝒊ℏ
𝟐𝟐𝒎𝒎

𝛁𝛁𝟐𝟐𝚿𝚿    (3) 

The squared value of the solution functionΨ of the 
differential Eq. (3) physically represents the most 
probable value that the particles is in a determinate 
position at a given time. 

This analogy opens an important door to approach 
the study of the diffusion process using the formalism 
and concepts of the quantum mechanics. This 
situation to allow to develop a new way to study the 
diffusive phenomena. 

2. Hypothesis 

For the exposed above, it is possible to study the 
diffusion process using the conceptual formalism of 

quantum mechanic. Particularly to the 
one-dimensional simple case of the particles flux 
when penetrate a diffuser material traversing the 
potential energy barrier.  

2.1 Objectives 

To develop an analytic model of the diffusion 
process using the quantum mechanics formalism, 
especially to the study of the behavior of the diffusion 
coefficient. 

To resolve the Fick’s equation to the diffusive 
phenomena, to get a diffusion coefficient behavior and 
analytic model using the quantum mechanics 
concepts. 

3. Development 

It is possible to perform an analogy between the 
potential barrel model of the quantum mechanics [2] 
and the diffusion phenomena, to the case when the 
diffusive particles break through the boundary of 
diffuser material. 

For simplicity, a one-dimensional model will be 
developed, that which coincides with the average 
general motion of the particle flow. 

3.1 One-Dimensional Model of the Potential Barrier  

Each particle of the diffusive substance that penetrate 
the diffuser material, they move with energy E, to 
surface that separate the free region 1 (x < 0) of the 
diffuser material region 2 (x ≥ 0) as show the Fig. 1. 

To can penetrate, the particles should break through 
the barrier of the potential energy V0 on the position x 
= 0. 

The Schrödinger’s Eq. (3) to stationary states of the 
particles that are moving with energy E into the 
potential energy field V(x) has a form: 

− ℏ2

2𝑚𝑚
𝑑𝑑2Ψ
𝑑𝑑𝑥𝑥2 + 𝑉𝑉(𝑥𝑥)Ψ = 𝐸𝐸Ψ     (3) 

In this equation, Ψ (x, t) is the wave function, 
solution of the Schrödinger’s differential equation, 
whole square value has the physical mean of the  
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Fig. 1  Graphic of the energy of the particles in position 
function. In the origin x = 0 exist a potential energy step 
with height V(x) = V0. 

 

probability of the particles of being in a position x at 
the time t determinate, respect a framework 
determinate. 

To the case of study of the diffusion process, into 
the region 1 (to see Fig. 1), the particles of the flux 
move freely (V(x) = 0) with energy E. So that, the 
Schrödinger equation take de form: 

𝑑𝑑2Ψ1
𝑑𝑑𝑥𝑥2 + 𝑘𝑘1

2Ψ1 = 0 (x< 0)    (4) 

Its solution is: 
Ψ1(𝑥𝑥) =  𝐴𝐴1𝑒𝑒𝑖𝑖𝑘𝑘1𝑥𝑥 + 𝐵𝐵1𝑒𝑒−𝑖𝑖𝑘𝑘1𝑥𝑥  

With 𝑘𝑘1
2 = 2𝑚𝑚𝐸𝐸

ℏ2  

In this result 𝐴𝐴1𝑒𝑒𝑖𝑖𝑘𝑘1𝑥𝑥  represent the wave function 
of the particles moving from the left to the right 
toward the potential barrier. However, 
𝐵𝐵1𝑒𝑒−𝑖𝑖𝑘𝑘1𝑥𝑥 correspond at the wave function of those 
particles that before whip back, they are moving to left 
in the region 1.  

On the same way, into the region 2, the particles 
that get through the potential barrier, they diffused to 
the right moving with energy (E-V0); and its 
Schrödinger equation will be: 

𝑑𝑑2Ψ2
𝑑𝑑𝑥𝑥2 + 𝑘𝑘2

2Ψ2 = 0 (x> 0)    (5) 

And its solution is: 
Ψ2(𝑥𝑥) =  𝐴𝐴2𝑒𝑒𝑖𝑖𝑘𝑘2𝑥𝑥 + 𝐵𝐵2𝑒𝑒−𝑖𝑖𝑘𝑘2𝑥𝑥    (6) 

With 𝑘𝑘2
2 = 2𝑚𝑚(𝐸𝐸−𝑉𝑉𝑉𝑉)

ℏ2  

𝐴𝐴2𝑒𝑒𝑖𝑖𝑘𝑘2𝑥𝑥  should be understood as the wave function 
of the particles that are diffused into the region 2; and 
they are moving to the right of the x axis.  

However, 𝐵𝐵2𝑒𝑒−𝑖𝑖𝑘𝑘2𝑥𝑥 correspond at the wave 
function of the particles that are moving to the left into 
the same region to different reasons. 

3.2 The Diffusion Coefficient D 

Of the density of the particles flux J0 that arrive 
over the potential barrier from the right, a certain 
fraction them get to penetrate at the region 2 inside of 
the diffuser material. 

The quantum expression to the density of the 
particles flux J0 is [2]:  

𝐽𝐽0 = ℏ𝑘𝑘
𝑚𝑚

|𝐴𝐴1|2   (7) 

In the case that the energy E of the incident 
particles on the potential barrier is greater than the 
potential energy of the barrierV0, then these particles 
penetrate at the zona 2 of the diffuser material. 

Applying the continuity boundary conditions on the 
frontier between region 1 and region 2 (x = 0) to the 
quantum mechanics: 

Ψ1(0) = Ψ2(0) and 𝑑𝑑Ψ1(0)
𝑑𝑑𝑥𝑥

 = 𝑑𝑑Ψ2(0)
𝑑𝑑𝑥𝑥

 

Then in these cases it had obtainedthat2: 
A2 = A1 + B1 and k1(A1- B1) = k2A2 

Solving and rearranging the before expression, it 
gives:  

𝐵𝐵1 = 𝑘𝑘1−𝑘𝑘2
𝑘𝑘1+𝑘𝑘2

    y    𝐴𝐴2 = 2.𝑘𝑘1
𝑘𝑘1+𝑘𝑘2

  (8) 

The reason of the particles density flux that get to 
enter JD at the region 2 over the density of the incident 
particles flux J0 is known as transmission coefficient D, 
or diffusion coefficient.  

If is taken in account the Eq. (8), the expression to 
D is2: 

𝐷𝐷 =  𝐽𝐽𝐷𝐷
𝐽𝐽0

= 4𝑘𝑘1.𝑘𝑘2
(𝑘𝑘1+𝑘𝑘2)2   (9) 

Replacing the expression of the k1 and k2 (4) and (6) 
into the Eq. (9), is obtained that:   
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𝐷𝐷 = 4. �𝐸𝐸.(𝐸𝐸−𝑉𝑉0)
2𝐸𝐸−𝑉𝑉0+2.�𝐸𝐸.(𝐸𝐸−𝑉𝑉0)

   (10) 

The expression of the Eq. (10) shown that only 
those particles with energy E greater than the potential 
energy V0 of the barrier, it can be penetrated at region 
2; in other case, the value of the square root will be 
imaginary, and the diffusion coefficient has not a real 
value. 

If it is considered that the energy of the movement 
of the particles with one free degree can be expressed 
as E = ½.K.T, (K is the Boltzmann’s constant, with a 
value equal at 1,830649.10-23 J/K). 

T is the temperature in Kelvin degree. Replacing 
this equality into the Eq. (10) and operating, it found 
that:  

𝐷𝐷 = 4.
�1

2.𝑘𝑘 .𝑇𝑇�1
2.𝑘𝑘 .𝑇𝑇−𝑉𝑉0�

𝑘𝑘 .𝑇𝑇−𝑉𝑉0+2.�1
2.𝑘𝑘 .𝑇𝑇.�1

2.𝑘𝑘 .𝑇𝑇−𝑉𝑉0�
   (11) 

In accord with the obtained Eq. (11), the diffusion 
coefficient value depends on the two parameters: the 
temperature T of the diffusion process and the 
potential energy V0 of the barrier.   

3.3 Calculation of the potential Energy of the Barrier 
V0 

To can use the Eq. (11) in order to calculate de 
diffusion coefficient D, it is necessary to determinate 
the energy value V0 of the potential barrier. So, 
combining the relations (8) and operating them, it is 
possible find: 

𝐴𝐴2𝑘𝑘2 = 2.𝑘𝑘1 − 𝐴𝐴2𝑘𝑘1   (12) 
Replacing the expression of k1 y k2 respectively and 

combining them, it is possible to obtain:  
𝐴𝐴2.�(𝐸𝐸 − 𝑉𝑉0) = √𝐸𝐸. (2 − 𝐴𝐴2)   (13) 

Replacing Efor½.k.T into the Eq. (13) and clearing 
the potential energy of the barrier V0: 

𝑉𝑉0 = 𝐸𝐸 − 𝐸𝐸 �1 − 2
𝐴𝐴2
�

2
= 𝐸𝐸. 4

𝐴𝐴2
�1 − 1

𝐴𝐴2
�=2𝑘𝑘𝑇𝑇

𝐴𝐴2
�1 − 1

𝐴𝐴2
�  (14) 

It is possible to get a A2 value through of the 
experimental measurement. In the case of diffusion 
process, it can have the value of the diffusive 

substance concentration into the inner of the diffuser 
material (region 2), at any distance x > 0.    

With de measured data, and the temperature value 
of diffusion process; it is possible to use the Eq. (14) 
to calculate the potential energy of the barrier. 

Once the V0 of the potential barrier value is 
calculated, it can used to calculate the diffusion 
coefficient through of the Eq. (11).  

Replacing the Eq. (14) in the Eq. (11), another 
equation is obtained to diffusion coefficient:  

𝐷𝐷 = 2. 𝐾𝐾𝑇𝑇(2−𝐴𝐴2)

𝐾𝐾𝑇𝑇(3−𝐴𝐴2)+ 4
𝐴𝐴2
�1− 1

𝐴𝐴2
�
   (15) 

4. Resolution of the Ficks’s Equation to the 
Diffusive Phenomena 

The second Fick’s law can write to one-dimensional 
case as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑥𝑥2    (16) 

To resolve the Eq. (16) using the separable variable 
method, it is proposed as a solution a function of the 
type: 

C(x,t) = X(x).T(t) 
Where X(x) is a function that depend only on the 

variable x; and T(t)is a function that depend only on 
the time. Replacing the C(x,t) expression on the 
equation (16) and dividing both members for C(x,t), it 
is obtained de expression:    

1
𝑇𝑇
𝑑𝑑𝑇𝑇
𝑑𝑑𝜕𝜕

= 𝐷𝐷
𝑋𝑋
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = 𝑚𝑚2   (17) 

The left member of the Eq. (17) corresponds at the 
function that depend only on the time, while of the 
right member is a function that depend only on the 
spatial variable x, then, only they be equal if both are 
equal at a constant value, denominated m2. 

So, it has a differential equation system to resolve: 
1
𝑇𝑇
𝑑𝑑𝑇𝑇
𝑑𝑑𝜕𝜕

= 𝑚𝑚2    (17a) 

𝐷𝐷
𝑋𝑋
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = 𝑚𝑚2    (17b) 

To resolve de differential Eq. (17a), it can be 
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written as: 
𝑑𝑑𝑇𝑇
𝑇𝑇

= 𝑚𝑚2𝑑𝑑𝜕𝜕; whose solution is: 

𝑙𝑙𝑙𝑙 �𝑇𝑇 𝑇𝑇0
� � = 𝑚𝑚2𝜕𝜕 or 𝑇𝑇(𝜕𝜕) = 𝑇𝑇0𝑒𝑒𝑚𝑚

2𝜕𝜕   (18) 

Where T(t) is the value of the temporal function at 
the time t, and T0 is the initial value of this function (t 
= 0). 

Proceeding in the same way to resolve the 
differential Eq. (17b): 

𝑑𝑑2𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑥𝑥2 = 𝑚𝑚2

𝐷𝐷
.𝑋𝑋(𝑥𝑥). It is proposed as a solution the 

function: 
X(x) = A.cos(k2x)   (19) 

Replacing the Eq. (19) into the differential equation 
and operating, it is obtained: 

𝑘𝑘2
2 =  𝑚𝑚

2

𝐷𝐷
 or 𝑚𝑚2 = 𝐷𝐷𝑘𝑘2

2 or 𝑚𝑚 =  ∓𝑘𝑘2√𝐷𝐷 

The value of D it is possible to calculated from the 
Eq. (15); and k2value into the region 2 is given to Eq. 
(6). Then it can be calculated the value of constant m. 

With this result obtained, the solution function of 
the Fick’s differential equation is: 

𝜕𝜕(𝑥𝑥, 𝜕𝜕) =  𝑒𝑒𝑘𝑘2
2𝐷𝐷𝜕𝜕 [𝐴𝐴0 cos(𝑘𝑘2. 𝑥𝑥) + 𝐵𝐵0cos(−𝑘𝑘2. 𝑥𝑥)]   (20) 

The function solution shows that behavior of the 
flux the particles is the superposition between 
stationary plane waves. This behavior is modulated 
por the temporal factor 𝑒𝑒𝑘𝑘2

2𝐷𝐷𝜕𝜕 . 
In order to find the value of A0 and B0constant, it is 

necessary to use the initial and boundary conditions: 
Initially, the concentration value of the diffusive 

substance in the inner of the region 2 is null; it is to 
say that: 

C(0,0) = 0, then  A0 = - B0; and so, the Eq. (20) 
take the form: 
𝜕𝜕(𝑥𝑥, 𝜕𝜕) =  𝐴𝐴0𝑒𝑒𝑘𝑘2

2𝐷𝐷𝜕𝜕 [cos(𝑘𝑘2. 𝑥𝑥) − cos(−𝑘𝑘2. 𝑥𝑥)] (21) 
If it is possible to measure the value of 

concentration C1 into the region 2 at the distance x1 > 
0 at the time t1, then it can be calculated de value of 
the coefficient A0, replacing the x1 and t1 on the Eq. 
(21) and operating the next expression is obtained: 

𝐴𝐴0 = 𝜕𝜕1.𝑒𝑒−𝑘𝑘2
2𝐷𝐷𝜕𝜕1

[cos (𝑘𝑘2.𝑥𝑥1)−cos(−𝑘𝑘2.𝑥𝑥1)]   (22) 

Now it is possible to model all the one-dimensional 
diffusion process from a few experimental 
measurements: The concentration C1, on the point x1 

into the region 2; at the time t1 of the measurement.  

5. Results and Conclusions 

Given the similarity and analogy between the 
Schrödinger’s equation to the stationary states and the 
second Fick’s law to the diffusion process, it is able 
use the concepts and results of the quantum mechanics 
to study the diffusion phenomena, as well also its 
mathematical formalism. 

In fact, it was possible to formalized 
mathematically the diffusion coefficient D and the 
potential energy of the barrier V0. 

The results obtained show that it is sufficient to 
measure the concentration of diffusive substance into 
a point x1 in the inner the diffuser element, and the 
time that the measurement was performed, to model 
all one-dimensional process. Of course, it is necessary 
also to know the temperature T in Kelvin degree in 
which take place the diffusion process, to calculate the 
diffusion coefficient D and the potential energy of 
barrier V0. 
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