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We use Extended Merton model (EMM) for estimating the firm’s credit risks in the presence of inflation. We show 

quantitatively that inflation is an influential factor making either a benign or adverse effect on the firm’s survival, 

supporting at the microeconomic level New Keynesian findings of the nonlinear inflation effect on output growth. 

Lower inflation increasing the firm’s expected rate of return can raise its mean year returns and decrease its default 

probability. Higher inflation, decreasing the expected rate return, makes the opposite effect. The magnitude of the 

adverse effect depends on the firm strength: for a steady firm, this effect is small, whereas for a weaker firm, it can 

be fatal. EMM is the only model taking account of inflation. It can be useful for banks or insurance companies 

estimating credit risks of commercial borrowers over the debt maturity, and for the firm’s management planning 

long-term business operations. 
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Introduction and Literature Review  

Entities in the financial services industry must estimate credit risks for an individual borrower with the 
highest possible accuracy and precision, taking account of all factors affecting the risks. There is evidence from 
macroeconomics that inflation is among such factors. Fisher (1993; 1996) has shown a nonlinear relation 
between inflation and output growth with a threshold inflation value separating the interval of low inflation, 
making a “greasing” effect on output growth, from the region of high inflation, “throwing sand” into the 
machinery of output growth. The New-Keynesian literature argues that these two effects appear systematically 
when the inflation rate moves from its lower to higher levels. In the long run, the moderate inflation rate assures 
the level of economic activity, which is higher than the one under complete price stability (Ackerlof et al., 1996). On 
the negative effect of inflation on output growth (the sand effect), Keynes (1920) says:  

As the inflation proceeds, and the real value of the currency fluctuates wildly from month to month, all permanent 
relations between debtors and creditors, which form the ultimate foundations of capitalism, become so utterly disordered as 
to be almost meaningless, and the process of wealth-getting degenerates into a gamble and a lottery. (p. 220) 
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Trying to explain the mechanisms providing these effects, macroeconomists use exclusively 
macroeconomic arguments, considering influences of the nominal wages and prices rigidity, imperfect 
competition, non-neutrality of money, and persistent aggregate fluctuations (Goodfriend & King, 1997; 
Rotemberg & Woodford, 1997; Woodford, 2003; Gali, 2002; 2008). (Wages and prices are rigid if a change in 
demand or costs is not fully transmitted to prices or wages.) In their empirical analysis of output growth, 
macroeconomists usually include the macroeconomic explaining variables such as the initial level of GDP per 
capita, trade openness, measured as a ratio of the sum of exports and imports to GDP, government expenditures 
to GDP, investments, presented as a ratio of gross fixed capital formation to GDP, population growth, and the 
inflation rate, defined as a growth rate of the consumer price index (CPI) (Levine et al., 2000; Beck et al., 2000; 
Khan & Senhadji, 2001; Lopez-Vallavichencio & Mignon, 2011; Khan, 2013). 

A natural question arises if there is such nonlinear relation between inflation and output and stability of the 
firm. With this objective in mind, one has to include inflation into the model describing the firm’s development. 
Unfortunately, as it follows from literature (e.g., Bohn, 2006; Canbolat & Gumrah, 2015; Crouhy et al., 2006; 
Hamerle et al., 2003; Kern & Bernd 2001; Leland, 2006b; Sundareshan, 2013), no contemporary theoretical or 
practical model considers inflation when estimating credit risks of a commercial borrower. Here we give 
examples illustrating the general inability of the existing credit risk models to take account of inflation. 

CreditMetricsTM (JP Morgan; CreditMetricsTM—Technical Document, 2007) applies primarily to bonds 
and loans and estimates a forward distribution of a credit portfolio value at a time horizon of one year. The 
changes in the portfolio value occur due to random migrations in a borrower’s credit quality up to default. The 
credit risk estimation extensively uses average credit risk ratings imported from rating agencies (Moody’s or 
Standard & Poor’s). The model does not include inflation as a factor influencing the portfolio value. 

CreditPortfolioView (McKinsey) estimates credit risks using a discrete-time multi-period model with 
default probabilities considered as functions of macroeconomic variables. Namely, levels of the long-term 
interest rate, the growth rate of GDP, the global unemployment rate, the exchange rates, the public spending, 
and the savings (Derbali & Hallara, 2012). This system uses a too broad approach to the credit risk problem to 
be sufficiently precise when estimating the credit risks of an individual firm.  

Moody’s KMV credit risk technique (Bohn, 2006) uses the geometric Brownian model (GBM, Eq. (3) 
along with an extensive default database to assess the default probability and the loss distribution at a time 
horizon of one year. The method applies to publicly traded firms for which the market value of equity is known. 
A GBM deficiency is in its lognormal distribution, producing the default probabilities much lesser than the 
default frequencies observable in practice. To overcome this deficiency, Moody’s KMV calculates in GBM the 
distance to default for the firm’s current state, and then using the default database, determines a share of the 
firms with that distance to default, who have defaulted within a year. They call this share the Expected Default 
Frequency (EDF). As one can see in Section 1, EDF is a rough estimate of the intensity of default probability 
(IPD) computed at a horizon of one year. Moody’s KMV does not include inflation as a model parameter.  

The vector of studies in the credit risk theory shifts from various modifications of GBM models (e.g., 
Merton, 1974; Black & Cox, 1976; Leland, 1994; Longstaff & Schwartz, 1995; Leland & Toft, 1996) to the 
more advanced jump-diffusion processes (JDPs). JDPs use a combination of GBM with Poisson’s jumps down 
in the firm value (Merton, 1979; Hilberink & Rogers, 2002; Kou, 2002; Leland, 2006a; Zhou, 2001), or jumps 
in both directions like the double-exponential jump process introduced by (Chen & Kou, 2005). Because JDPs 
consider only publicly traded firms whose market values are known, jumps in the firm value are allegedly 
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caused by new information about the firm. Unfortunately, no procedure of direct measurement of jump 
parameters (their intensity and length) is specified. To determine jump parameters, Leland (2006b) and other 
researchers, following the ideology of Moody’s KMV, calibrate their models to specific default databases. 
Downward jumps lead to negative skewness in a log-value distribution, which pure GBM lacks. However, in its 
current form with a time-independent jump part, no JDP can correctly describe the firm value distribution 
because of its permanently growing skewness. These models also do not consider the effect of inflation on 
credit risks because neither their diffusion part nor their jump part includes the inflation rate as a parameter. 
None of the theoretical or practical credit risk models takes account of inflation while estimating the default 
probability of an individual firm. 

GBM can feel inflation only through the expected rate of return. Inflation produces a benign/adverse effect 
on the development of the firm if inflation causes an increase/decrease in its expected rate of return. At that, the 
firm value distribution remains lognormal with a greater/lesser drift rate. If the price increase exactly offsets the 
decrease in demand, the expected rate of return remains the same, and nothing will change to the firm in the 
GBM model. Our objective is to show that inflation affects the firm value in this case too.  

Here we consider a continuous-time credit risk model estimating the probability that the firm in its 
development will face a lack of liquidity, leading the firm to default. We trace down the dependence of default 
probability on factors of the firm’s business environment, including inflation. Our model supports the 
macroeconomic empirical observations and theoretical results of New Keynesian literature that moderate 
inflation rates are good for the national economy, but high inflation rates make an adverse effect on it. The 
model proves that the roots of this phenomenon are in the microeconomic properties of the firm and, therefore, 
they are hardly visible at the macroeconomic level. Concerning credit risks of an individual firm, we conclude 
that inflation can make a significant effect on the firm default probability and its mean value; thus, credit risk 
models must take account of it.  

In Section 1, we briefly introduce a continuous-time Extended Merton model (EMM) comprehensively 
presented by Shemetov (2020). We show that the firm’s compulsory payments (or business securing 
expenses—BSEs) including fixed costs, debt payments, taxes, and dividends) lead to a skewed log-value 
distribution with its variance and skewness growing fast. At that, the log-value mean is always a concave-down 
function of time whose characteristics depend on the firm’s business parameters.  

In Section 2, we briefly show that the skewed distribution generated by EMM sheds new light on the 
no-arbitrage pricing principle. This principle is considered now as unconditionally correct; however, it is 
unconditionally valid only for the market of GBM-firms which do not take account of BSEs. We show when 
these payments are included into a model, the no-arbitrage pricing principle becomes a time-dependent 
characteristic of individual stocks and the firms issuing them, rather than a universal property of the market as a 
whole. From a practical point of view, it means that the long-term investors such as pension funds, mutual 
funds, banks, insurance companies, and big firms suffer unnecessary losses misled by the structural models and 
no-arbitrage pricing principle. 

In Section 3, we analyze the inflation effects on the firm’s development and show that inflation can make a 
positive effect as well as a negative effect on the firm’s state and survival. The magnitude of this effect depends 
on the state of the firm and its business environment, and also on the elasticity of demand on the firm’s production. 
Results of this Section demonstrate that the New Keynesian nonlinear dependence of output growth on inflation 
has its roots in the microeconomic properties of the firm hardly visible from the macroeconomic level. 
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Model Description 
The Extended Merton model (EMM) is described by the equation: 

݀ܺ ൌ ሺܺߤ െ ܲሻ݀ݐ ൅ ሺ0ሻܺ ,ܹ݀ܺܥ ൌ ܺ଴, (1)
ܲ ൌ ܥܨ ൅ ܲܦ ൅ ܺܣܶ ൅ (2) .ܸܫܦ

Here X(t) is a firm market value at time t, ߤ is an instantaneous expected return on the firm per unit time, P is 
the total dollar payouts by the firm for its fixed costs (FC), debt payments (DP), corporate taxes (TAX), and 
dividend payments (DIV), all per unit time. C is the volatility of the firm value, and W is a Wiener process 
representing a cumulative effect of normal shocks; ߤ and C are constants (Shemetov, 2020). Business securing 
expenses P (BSEs for short) is considered as a known function of time,  

P(t) = P0 π(t), π(0) = 1. (2a)
and P0 is a non-zero constant. Components FC and DP are functions of time π(t) reflecting changes in business 
conditions; TAX and DIV depend on year returns and corresponding tax and dividend rates. Here we 
concentrate on the inflation effects and consider the development of the firm value without taxes and dividends, 
setting them to zero. 

For ܲ ൌ  :଴ܺ, δ0 ≥ 0, EMM reduces to the structural model, or GBMߜ
݀ܺ/ܺ ൌ ሺߤ െ ݐ଴ሻ݀ߜ ൅ (3) .ܹ݀ܥ

A GBM solution (0 ≤ X < ∞) is a lognormal distribution 
ܷሺݔ, ሻݐ ൌ ሺ2ߪߨଶሻିଵ/ଶܺିଵ݁݌ݔሼെሺ݈݊ܺ െ ଶሻሽ, (4)ߪሻଶ/ሺ2ܪ
ሻݐሺܪ ൌ ଴ܪ ൅ ሻݐଶሺߪ ,ݐܴ ൌ ଴ߪ

ଶ ൅ ܴ ,ݐଶܥ ൌ ߤ െ ଴ߜ െ  .ଶܥ0.5
In the original structural model introduced by Merton (1974), a firm comes to default only if its value 

turns less than the firm’s outstanding debt at the debt maturity. Black and Cox (1976) improve it, introducing a 
threshold triggering default any time when the firm value hit the threshold (the default line). This version of the 
model with all its subsequent generalizations historically has got the name of structural model. Since that time, 
“the GBM or structural model becomes the workhorse for gaining insights in different fields of economics and 
finance” (Sunduresun, 2013).  

For the firms described by the structural model with a linearly growing log-value mean (Eq. 4), a stock 
market proves to be a no-arbitrage market (Harrison & Kreps, 1979; Harrison & Pliska, 1981). Any firm has 
the same mean year returns R each year that makes the mean calibrated stock prices to stay constant, and the 
firm value is independent of the asset structure so far as the market remains perfect (there is no friction). In 
other words, the no-arbitrage market is consistent with the Modigliani-Miller theorem of irrelevance 
(Modigliani & Miller, 1958). The firm value distribution is almost insensitive to inflation. All these inferences 
from the distribution lognormality contradict the observable facts: firms do not have the same mean year 
returns each year, and inflation does affect the firm’s development (see Keynes, 1920, p. 220). We emphasize 
here that the no-arbitrage pricing principle is specific for GBM and, therefore, is not universally valid in the 
more general EMM. 

Equation (1) for the random variable x ൌ lnሺܴܺ଴/ ଴ܲሻ with Ito’s lemma transforms to  
ݔ݀ ൌ ܴሺ1 െ ݐሻ݁ି௫ሻ݀ݐሺߨ ൅ (5) ,ܹ݀ܥ

ሺ0ሻݔ ൌ ଴ݔ ൌ ln ሺܴܺ଴/ ଴ܲሻ, ܴ ൌ ߤ െ ଶ. (6)ܥ0.5
Writing a Fokker-Plank equation for the process (5), one comes to an equation for the probability 

distribution, V(x, t); Vy is a partial derivative over variable y: 
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௧ܸ ൅ ܴሺ1 െ ሻ݁ି௫ሻݐሺߨ ௫ܸ െ ଶܥ0.5
௫ܸ௫ ൅ ሻ݁ି௫ܸݐሺߨܴ ൌ 0. (7)

The initial condition is 
ܸሺݔ, 0ሻ ൌ ܰሺݔ; ,଴ܪ ଴ߪ

ଶሻ, ܪ଴ ൌ ଴ߪ ,ۄሺ0ሻݔۃ
ଶ ൌ ሺ0ሻݔሺۃ െ (8) ,ۄ଴ሻଶܪ

where ܰሺݔ; ,଴ܪ ଴ߪ
ଶሻ is a normal distribution. To study the credit risk problem, one must add a boundary 

condition implying that a firm comes to default when its value falls to an outstanding debt (Black & Cox, 1976). 
If the firm has debt XD (an exogenous boundary), 

ܸሺܮܦ, ሻݐ ൌ ܮܦ ,0 ൌ lnሺܴܺ஽/ ଴ܲሻ ൐ 0. (9)
If the firm has no exogenous obligations, there is another constraint. A share of BSEs in expected year 

returns is 

଴ܲ/ሺܴܺۃ଴ۄሻ ൌ exp ሺെܪ଴ െ ଴ߪ0.5
ଶሻ. 

For H0 ≥ 0 this share is less than one, while for H0 < 0 it exceeds one, and the firm pays out more than it 
earns. The line x = 0 separates a profitable business from failure. In this case it is reasonable to introduce a soft 
endogenous boundary 

ܸሺܮܦ, ሻݐ ൌ 0, ܮܦ ൌ 0, (10)
and watch the probability of crossing this line. The general boundary condition is  

ܸሺܮܦ, ሻݐ ൌ ܮܦ ,0 ൌ maxሺ0, lnሺRܺ஽/ ଴ܲሻ. (11)
A solution of the problem (7, 8, 11) is the log-value distribution for a firm in financial distress; it is 

denoted as ෠ܸ ሺݔ, ,ݔሻ. If one knows a solution  ܸሺݐ  ሻ in the open space, then a solution of the boundaryݐ
problem (7, 8, 11) can be written as  

෠ܸ ሺݔ, ሻݐ ൌ ܸሺݔ, ሻݐ െ ܸሺ2ܮܦ െ ,ݔ ሻ. (12)ݐ
The probability distribution turns to zero at the default line, ෠ܸ ሺܮܦ, ሻݐ ൌ 0, and the intensity of default 

probability is  

ሻݐሺܦܲܫ ൌ 2 ׬ ܸሺݔ, ஽௅ݔሻ݀ݐ
ିஶ . (13)

The first three moments are calculated along with the probability distribution ෠ܸ ሺݔ,  :ሻݐ

ሻݐ෡ሺܪ ൌ ׬ ݔ ෠ܸஶ
஽௅ ሺݔ, ሻݐሺݎ෠ܸܽ ,ݔሻ݀ݐ ൌ ׬ ሺݔ െ ෡ሻଶஶܪ

஽௅
෠ܸሺݔ,  ,ݔሻ݀ݐ

መܵሺݐሻ ൌ ׬ ሺݔ െ ෡ሻଷஶܪ
஽௅

෠ܸሺݔ,  .ݔሻ݀ݐ
(14)

መܵሺݐሻ, proportional to skewness, shows the development of the distribution asymmetry.  
The main objective of any credit risk analysis is estimation of the default probability over a chosen time 

interval (e.g. an interval of debt maturity) 

,௦ݐሺܦܴܲ ܶሻ ൌ ׬ ௧ೞା்ݐሻ݀ݐሺܦܲܫ
௧ೞ

, (15)

Here ݐ௦ is a moment when a credit is issued, ݐ௦ ൅  ܶ is a debt maturity, and ܴܲܦ ሺݐ௦, ܶሻ is the probability of 
corporate default over the credit period. In this paper, ݐ௦ is set to zero: ݐ௦ ൌ 0. 

EMM Properties and No-arbitrage Pricing Principle 
For R and P constant, π(t) ≡ 1, and BSEs paid continuously, Eq. (5) transforms to  

ݔ݀ ൌ ܴሺ1 െ ݁ି௫ሻ݀ݐ ൅ ሺ0ሻݔ ,ܹ݀ܥ ൌ ଴. (16)ݔ
Stochastic Eq. (16) has no exact solution; we shall analyze the process behavior in the open space 
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(െ∞ ൏ ൏ ݔ ∞ሻ qualitatively using the Brownian motion model. Suppose that at t = 0 we have an ensemble of 
Brownian particles whose initial locations ݔ଴ have a normal distribution ܰሺݔ଴; ܪ଴, ଴ߪ

ଶሻ with the mean H0 
and variance ߪ଴

ଶ, and most of that ensemble is over the line x = 0, while the other is under it (H0 > 0). For these 
conditions, the line x = 0 is the line of balance between the firm’s mean year returns and yearly BSEs.  

Due to the properties of the drift term, ܴሺ1 െ ݁ି௫ሻ, the particle diffusion to the left (x < 0) runs much 
faster than their diffusion to the right (x > 0). As a result, the distribution gains a heavy left tail, continuously 
growing. The initially normal distribution ܰሺݔ଴; ,଴ܪ  ଴ߪ 

ଶሻ gradually turns into a leptokurtic and negatively 
skewed x-distribution. At that, the higher located the initial ensemble over the line x = 0, the more time the 
ensemble deformation will take, the lesser the distribution skewness for fixed time intervals. A rising mean 
value due to the positive drift can compensate to some extent the effect of diffusion mass transfer across the 
line x = 0 slowing down the skewness development. Vice versa, the closer the mean of the original ensemble to 
the line x = 0, the faster runs the distortion of the initially normal distribution. The described ensemble 
evolution explains the space-time development of x-distribution. The ever decreasing mean year returns 
together with an increasing volatility make the firm’s stock price to decrease systematically. As a consequence, 
the stock price cannot be a martingale, or the martingale (risk neutral) measure does not exist. This fact together 
with the First fundamental theorem of asset pricing (see Shiryaev, 1998, p. 529; Financial Economics, 1998, p. 
525) proves that no-arbitrage pricing principle is not a universal property of the perfect market. It can be 
applied to the stocks of a particular firm so far as its mean year returns remain (almost) constant (see for the 
details Shemetov, 2020). 

To illustrate general properties of the distribution generated by EMM, we solve numerically the problem 
(7, 8, 11) with π(t) ≡ 1 evaluating the firm’s default probability. We suppose that all of the perfect market 
assumptions hold. Examples of modeling of the x-distribution V(x, t) and its statistical moments H(t), VAR(t) 
are presented in Figures 1-3. The evolution of the intensity of default probability IPD(t), we present in Figure 4. 
Model parameters are: R = 0.10, ߪ଴

ଶ ൌ  0.03, C = 0.008, T = 10, DL = 0. 
Figure 1 shows the development of the mean value as a function of time and H0. All H(t)-lines fall apart 

into two classes. The first class consists of the lines, first rising then falling, whereas the second includes 
H(t)-lines, falling from the start (the firm bears steady losses). We do not consider the second class because it 
makes no practical interest. The separation of H-lines between the classes is mainly controlled by H0. A 
threshold value H0 for the chosen problem parameters is about one. Figure 1 shows that there are lines whose 
evolution takes a long time (decades, lines 1-6). A slope of each H(t)-line declines from R specific for the 
asymptotic GBM-distribution to small values as H0 descends from high to small values. Figure 1 proves that 
the GBM-mean is a poor approximation for the real mean returns H(t). One must keep in mind that all H(t) – 
H0 lines are concave-down lines (as lines 7 and 8) and sooner or later come over their maximums and tend to 
zero. An approximately straight rise of H(t), observed for high H0 (lines 3-6), provides for almost constant 
mean year returns. Time-independent mean year returns make the firm’s stock price a martingale. The 
no-arbitrage pricing principle holds for such stocks as far as they have this martingale property, and the mean 
year returns of the firm issued these stocks, remain constant. Thus, at the EMM-market, the no-arbitrage pricing 
principle is not a property of the market as whole as it is at the GBM-market. Now it is a feature of an 
individual stock and the firm standing behind it.  
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The martingale property of stock prices and the time-independent and entire-market-valid no-arbitrage 
pricing principle follow from GBM neglecting BSE payments. For short-time deals (much less than a year), 
stock prices are independent of the firm mean returns and have the log-normal distribution. Thus for short-term 
dealers, the stock prices make a martingale, the whole market is no-arbitraging, and the structural model is an 
adequate means for describing a state of the firm. A long-term investor has to be cautious because the 
martingale characteristic of stock prices and no-arbitrage pricing principle are not universal, but depend on the 
mean year returns of the firm issuing the stocks. A rise in debt, taxes, dividends, or inflation will decrease the 
mean year returns of the firm inflicting losses to the long-term investor (Figures 8, 10). 

Effects of Inflation 
Inflation is an intrinsic factor of any economic environment, and as such, it must be taken into 

consideration when analyzing the development of a firm over a long period. Inflation affects the firm value 
through the firm mean year returns and BSEs. A price rise on the materials used in the manufacturing as well as 
a price rise on the firm’s production, with a corresponding shift in demand, can change the expected rate of 
returns: 

ܴ௜ ൌ ܴ ൅ ∆ܴ௜௡௙, ܴ ൌ ߤ െ ଶ (18)ܥ0.5
For low inflation rates and low demand elasticity, this change can be positive, ∆ܴ௜௡௙ ൐ 0, when the 

expected return increase due to a higher price on the firm’s goods is not offset by the decrease in demand. For 
higher inflation this change becomes negative, ∆ܴ௜௡௙ ൏ 0 , whereas the expected rate of returns drops, as a 
higher price on the firm’s goods fails to compensate for the decrease in demand. Here we will consider a 
specific case when the increase in price caused by inflation is exactly offset by the decrease in demand. In this 
case, GBM does not see any change in the state of the firm (see Introduction). 

Let us consider a levered firm FL financed with a composition of equity E and debt ܺ஽ of leverage α at 
the initial moment, ܺۃ଴ۄ denotes the initial mean value: 

ۄ଴ܺۃ ൌ ۄܧۃ ൅ ܺ஽ ൌ ሺ1 െ ۄ଴ܺۃሻߙ ൅  .ۄ଴ܺۃߙ
For a debt of infinite maturity, the levered firm’s BSE, ௅ܲ ൌ ܲሺߙሻ, is 

ܲሺߙሻ ൌ ܲሺ0ሻ ൅ (19) ,ۄ଴ܺۃߙ݇
where k is the debt interest rate, and P(0) = FC makes BSEs of the unlevered firm (taxes and dividends are not 
included). 

Debt payments are paid in nominal dollars of the day when the debt has been issued, while all current FC 
payments are subject to inflation. For inflation of the expected rate i, the equation for the probability 
distribution of the levered firm is (ݔ ൌ ln ሺܴ௜ܺ/ ଴ܲሻ) 

௧ܸ ൅ ܴ௜ሾ1 െ ሺ݁௜௧ ൅ ሻ݁ି௫ሿߚ ௫ܸ െ ଶܥ0.5
௫ܸ௫ ൅ ܴ௜ሺ݁௜௧ ൅ ሻ݁ି௫ܸߚ ൌ 0. (20)

ߚ ൌ ௞ఈ
ோ೔

expሾܪ଴ሺ0ሻ ൅ ଴ߪ0.5
ଶሿ, (21)

where ߨሺݐሻ ൌ ݁௜௧ ൅ ߚ , and ܪ଴ሺߙ ൌ 0ሻ ൌ ேۄݔۃ  is the mean value of the initial value distribution of the 
unlevered firm. The initial condition for the levered firm becomes 

ܸሺݔ, 0ሻ ൌ  ܰሺݔ; ,ሻߙ଴ሺܪ ଴ߪ
ଶሻ, ሻߙ଴ሺܪ ൌ ଴ሺ0ሻܪ െ ln ሺ1 ൅ ሻ. (22)ߚ

The boundary condition is 
V(DL, t) = 0, ܮܦ ൌ ݔܽ݉ ሺ0, ሻߙ଴ሺܪ ൅ ଴ߪ0.5

ଶ ൅ ሻ, (23)ߙ݈݊
here N(x; H0, ߪ଴

ଶ) is a normal function. The problem (20)-(23) is solved numerically for various values of 
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on the quality of the firm’s team. The macroeconomic parameters directly affecting the inflation effect are the 
state of the firm’s industry and the national economy as a whole (boost-recession), including the magnitudes of 
their volatilities, the interest rate, and the inflation rate. It seems that the inflation rate optimal for the entire 
economy does not exist, because two firms in the same industry can experience the opposite inflation effects at 
the same rate of inflation depending on the patterns of their microeconomic parameters. (The optimal rate is the 
value separating the interval of inflation rates making a positive effect on the national output growth from the 
region of inflation rates exerting an adverse influence on output growth.) All said above makes the problem of 
determination of the optimal inflation rate hardly solvable by macroeconomic methods only. 

Conclusion 
We use a continuous-time credit risk model (EMM) taking account of the firm’s business securing 

expenses (BSEs) and inflation. In this problem setting, BSEs consist of fixed costs and debt payments. EMM 
computes a firm value distribution along with its mean, variance, and skewness as functions of time and 
parameters of the firm and its business environment. In an open space in variables (x, t), x ൌ lnሺRX/Pሻ, X—the 
firm value, R—the expected rate of returns, P—a BSE magnitude per time unit, t—time, the EMM-distribution 
transforms from an initially normal distribution to a negatively skewed one with its skewness and variance 
growing fast. The growing left tail in competition with the distribution right drift determines the development 
of mean returns H(t). After an almost straight rise of H(t) for period Tm depending on parameters of the firm 
and its business environment, the mean year returns begin to decline, causing a decrease in the firm’s stock 
price and cancelling the no-arbitrage pricing principle since the end of Tm. The no-arbitrage pricing principle 
always holds for short-term deals (t << Tm) when traders buy and shortly resell stocks trying to gain profits 
from the price difference. The structural model adequately describes this short-term activity. The structural 
model does not hold for long-term investors, such as pension funds, mutual funds, banks, insurance companies, 
and big firms. For long times (t ≈ Tm) when BSEs becomes essential, the no-arbitrage pricing principle is not a 
market characteristic anymore, but rather a characteristic of individual assets traded at the market. The stock 
value depends on the firm mean year returns which depend on the firm’s business parameters (the BSE share in 
the mean year returns, asset leverage, inflation rate, etc.). At that, the investor must know the period when the 
mean year returns will remain about constant. All risks raising the firm’s BSEs and decreasing its mean year 
returns can inflict losses to long-term investors. 

The model proves that the New Keynesian nonlinear dependence of output growth on inflation has its 
roots in the microeconomic characteristics of the firm hardly visible from the macroeconomic level, such as its 
mean value, the mean year returns, business securing payments, the asset structure, the elasticity of demand on 
the firm’s goods, and the volatility of the firm value depending both on the exogenous conditions and on a quality 
of the firm’s team. Two firms in different microeconomic conditions but in the same macroeconomic conditions 
can experience the opposite effects of inflation on their mean values and stability. That means that in the search 
for the optimal inflation rate, macroeconomists must take account of the microeconomic conditions too.  

At the microeconomic level, the model proves that: 
 inflation is an important factor of the firm’s business environment, and it must be taken into account when 

considering long-term corporate credit risks; 
 low inflation increasing the expected rate of returns makes a benign effect on the firm value and provides 

for conditions of a sustainable development decreasing the default probability; 
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 high inflation leading to a decrease in the expected rate of returns make an adverse effect on the firm 
development: the mean value decreases, and the default probability increases. However, the magnitude of this 
effect depends on the firm health: for steady firms, whose mean value is high, this effect is insignificant, but for 
weaker firms, this effect can be fatal; 

 the threshold between “low” and “high” inflation rates depends on the relation between inflation and the 
expected rate of returns, BSEs, and the elasticity of demand on the firm’s goods. These relations are sensitive to 
the state of an economy (a developed or developing economy, a boost or decline stage in the economic cycle, 
etc.), making these thresholds time-, industry-, and country-varying. 

The model can help the firm’s management better understand the current state of their firm and its 
prospects, especially when planning long-term business operations. It can be helpful forthe long-term investors 
evaluating their risks. It can also be useful for banks and insurance companies estimating credit risks for a 
particular commercial borrower at a horizon of debt maturity. 
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