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Fig. 7  The monitoring station Košice-Bankov (1:2,000); the red curve is the outline of the subsidence and green area is the 
forest park Košice-Bankov. 

 

2.1 1D Deformation Analysis from Levelling Networks 

In accordance with the general phases of the 

geodetic deformation analysis the project at hand was 

defined to contain the following phases [22, 24]: 

 Single epoch evaluation of the levelling data 

available. 

 Stability evaluation of reference benchmarks 

(points of the monitoring station). 

 Estimation of the most likely deformation model. 

The single epoch evaluation concentrates on the 

evaluation of the functional model, the observational 

data and the stochastic model. By means of the 

integration of the hypothesis testing, including outliner 

detection and variance component estimation the 

consistent mathematical model is obtained. In the 

second phase of the project the assumption in the 

functional model of stable reference benchmarks is 

tested. Unstable benchmarks are removed from the set 

and will further be treated as objective points. After 

establishing the correct functional model, the 

stochastic model may be improved as well. Again, we 

obtain a consistent mathematical model results. 

To arrive at the most likely mathematical model 

describing the deformation pattern underlying the data 

is the aim of the third phase. The functional model part 

is restricted to 1D, 2D, 3D and 4D polynomials. The 

mathematical model is again balanced by 

modifications of the stochastic model [20, 23]. 

To arrive at the most likely mathematical model 

describing the deformation pattern underlying the data 

is the aim of the third phase. The functional model part 
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is restricted to 1D, 2D, 3D and 4D polynomials. The 

mathematical model is again balanced by 

modifications of the stochastic model [20, 23]. 

2.2 Polynomial Break Points 

In the project described the third step consists again 

of three different steps, i.e. [22-24]: 

 Estimation of 1D-polynomial model per 

benchmark. 

 Estimation of 3D-polynomial model per selection 

benchmarks. 

 Evaluation of possible external 

height-information available. 

When evaluating the estimated time-dependent 

polynomials per benchmark it become more and more 

apparent, that such a polynomial could not accurately 

describe the behaviour of these benchmarks which 

came under the influence of the mineral deposit 

extraction sometime after the start of the exploration. 

Such behaviour was described by higher order 

polynomials, whereas it was actually due to a break in 

the trend of the subsidence.  

Allowing the polynomial function to have a 

so-called “break point”, which is defined as, may solve 

this problem, which is defined: A point in time at which 

a benchmark, due to the mineral deposit extraction, 

enters the subsidence area (Fig. 8). In many cases of 

subsidence it is very difficult to find out exactly where 

are the break points that determine the edges of the 

subsidence (Fig. 9 and Fig. 10). 

The estimation of the polynomial break points is a 

part of the procedure developed to establish the most 

likely mathematical model, describing the subsidence 

behaviour of a specific benchmark in time. The 

procedure is based on the concept of least-square 

estimation and multiple hypotheses testing [13, 19]. 
 

 
Fig. 8  Break point (simplified schematic model). 

 
Fig. 9  Break points zone on the subsidence edges 
(Košice-Bankov); red arrows show the zones of break 
points. 

 

 
Fig. 10  Questionable visual determination of the 
break points. 

2.3 Hypothesis Testing 

In general, the mathematical model under 

null-hypothesis may be modelled in terms of 

observation equations. The estimation of the 

polynomial break points is a part of the procedure 

developed to establish the most likely mathematical 

model, describing the subsidence behaviour of a 

specific benchmark in time. The procedure is based on 

the concept of least-square estimation and multiple 

hypotheses testing [13, 19, 23, 24]. 

   o : ; yH E y x D y A Q ,      (1) 

Subsidence

Break point

Surface 
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where E{.} is the mathematical expectation; y is m
-by-1 vector of observations; A is m -by- n  design 

matrix; x is n -by 1 vector of unknowns; D{.} is the 

mathematical dispersion; Qy 
is m-by-m variance 

covariance matrix of the observations and underlined 

values stand for stochastic. Moreover, m equals the 

number of observations and n is the number of 

unknowns. 

The validity of the null-hypothesis may be tested 

against the widest possible alternative hypothesis, by 

means of the test statistics T 

eOe y
T ˆˆT 1 ,                    (2) 

where ê  is m -by-1 vector of the least-squares 

corrections of the observations. 

In the case of rejection of the null-hypothesis, one 

will try to detect the cause of a rejection by formulating 

a (number of) possible alternative hypothesis. In 

general, the model under the alternative hypothesis 

may be written as a linear extension of the model under 

the null-hypothesis 

   o : ; yH y .x y  E A CL D Q ,   (3) 

where C is m -by-q matrix; L is q-by-1 vector; and CL 

describes the assumed model error. The dimension of 

the linear extension of the functional model q may vary 

from g = 1 to q = m-n. 

The validity of the alternative hypothesis may be 

tested by the test statistics 

  eQCCQQQCCQe ˆˆT 1
y

T11
yê

1
y

T1
y

T
q


,  (4) 

in which eQˆ  is the covariance matrix of the 

least-squares residuals. Under the null-hypothesis the 

test statistics Tq has a central distribution x2 with q 

degrees of freedom, i.e., x2(q,0). 

If q = 1 then C matrix reduces to m-by-1 vector C, 

and the vector L reduces to a scalar, causing Eq. (4) to 

reduce to 

    11
yê

1
y

T21
y

T
1 .êT

 cQQQcQc ,   (5) 

which is described as x2(1,0) under the null-hypothesis. 

The well-known application according to Eq. (5) is 

found in the method of data-snooping, where the data 

are checked for possible measurement errors by 

computing the so-called conventional alternative 

hypotheses. These hypotheses are of the form: ci
T= 

[0…010…0], in which 1 is found at the position j. 

In the study case Košice-Bankov in estimation and 

testing it is custom to compute, next to the overall 

model test all test statistics under indication w -test 

statistics for the conventional alternative hypotheses. 

In the present paper are used all three types of tests: Eq. 

(2), (4) and (5).  

2.4 Mathematical Model under H0 

Given benchmark, its height at the various epochs as 

computed after the stability analysis of the reference 

benchmarks from, together with their covariance 

matrix, the starting point for the evaluation of the 

benchmarks subsidence behaviour. The general form 

of 1D time-dependent polynomials of order n for the 

benchmarks heights is given as The estimation of the 

polynomial break points is a part of the procedure 

developed to establish the most likely mathematical 

model, describing the subsidence behaviour of a 

specific benchmark in time. The procedure is based on 

the concept of least-square estimation and multiple 

hypotheses testing [19-24]. 

n
kn

2
k2

1
k1

0
k0k tatatataH   ,     (6) 

where Hk is a height of the benchmark as determined at 

epoch k; ai is an unknown coefficient, i = 0,…,n; ti
k is 

measurement time of the epoch k to the power i. 

2.5 Alternative Hypotheses Considered 

The assumptions are as follows. The polynomial 

order before the break point is restricted to a maximum 

of one (n1  1), which is also the case under the 

null-hypothesis. This assumption is based on the fact 

that a possibly natural subsidence in the study case 

Košice-Bankov shows at the most a linear behaviour. 
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The polynomial order before the break point does 

not exceed the polynomial order after the break point, 

i.e., n2  n1. The function is required to be continuous in 

its break point, meaning that the function values of both 

polynomials before and after the break point should be 

the same. 

3. Results of Testing for Polynomial Break 
Points in the Study Case Košice-Bankov 

3.1 Polynomial Break Points Identification  

The aim of the procedure is to arrive at a consistent 

mathematical model, i.e., both the functional and the 

statistical model. In short the procedure is as follows. 

First a least-squares adjustment of the mathematical 

model under the null-hypothesis is performed. The 

validity of this model is tested by the application of the 

Overall Model test (OM-test), given in Eq. (2).  

Depending on the test result, the next steps are 

following [22-25]: 

(1) Acceptance H0: The estimated slope-coefficient 

(a1) is tested for its significance. If the parameter is 

significant, the functional model is replaced by a 

constant polynomial with implies stability of the 

benchmark considered. 

(2) Rejection H0: Test all alternative hypotheses as 

described above for their validity and determine the 

most likely alternative hypothesis. Depending on the 

most likely hypothesis selected, the following actions 

are taken: 

(a) w-test: Remove the observation concerned, i.e., 

the benchmark height at the epoch which was identified 

by the largest w-test value. 

(b) 01- or 02-test: Adapt the mathematical model 

under the selected alternative hypothesis to be the new 

mathematical model under the null-hypothesis. 

Possibly more parameters are needed to describe the 

benchmarks behaviour accurately. Hence, the 

null-hypothesis is again tested for its validity. In case 

of a rejection of the alternative hypotheses mentioned 

before, the benchmarks are once more tested. 

(c) B-test: Adapt a break point at the epoch which 

was identified by the largest B-test value. The order of 

the polynomial before and after the break point is now 

determined for each part separately.  

First consider the case where the dimensions of the 

hypotheses considered are equal. In our procedure this 

occurs when all w-tests or when all B-tests are 

compared. Since those test statistics Ti are all of the 

form (5) and thus all have the same central distribution 

with one degree of freedom, i.e. 

iT ≈  0,12  i                   (7) 

and the largest value implies the most likely alternative 

hypothesis. Hence, in this case the most likely 

alternative hypothesis is the one for which 

iT 
jT  j  i ,                    (8) 

where the indices i and j refer to the hypothesis i and j, 

respectively. 

However, at a certain point in the procedure the most 

likely alternative hypothesis should be selected from a 

number of hypotheses with different dimensions. This 

is the case when it is necessary to discriminate between, 

for instance, the 01- and 02-tests. Although the related 

test statistics x2 are again all x2 distributed, the number 

of degrees of freedom differs, i.e., we compare the test 

statistics of the form Eq. (5) with the test statistics of 

the form Eq. (4). Therefore the largest value does not 

automatically refer to the most likely alternative 

hypothesis.  

In order to deal with this problem in the present case, 

a practical solution may be found, comparing the test 

quotients, which are defined as Tq
i/xa

2(qi,0), where Tq
i 

is the test statistics of the form Eq. (4), referring to the 

i-the alternative hypothesis; xa
2(qi,0) is a critical value 

(l = 5%) of the central x2 distribution with qi degrees of 

freedom for a certain choice of ai.  

Here it should be noted that the test quotients might 

only be used if the significance levels ai of the tests 

involved are matched through an equal power. Those 

test quotients that are less than 1 are not taken into 
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account, since the hypothesis in question is certainly 

not more likely than the null-hypothesis. For the order 

test quotients it is assumed that the most likely 

alternative hypothesis is the one, which is rejected 

strongest, i.e., differs most from 1. Hence, the most 

likely hypothesis is the one for which the test statistics 

Tq
i and Tq

j are in the relation 

Tq
i/xa

2(qi,0) Tq
j/xa

2(qj,0)    j  i .    (9) 

3.2 Global Test of the Congruence 

Significant stability, respectively instability of the 

network points is rejected or not rejected by verifying 

the null-hypothesis H0 respectively, also other 

alternative hypothesis [25] 

0ˆd:H0;ˆd:H 0  CC  ,      (10) 

where H0 expresses insignificance of the coordinate 

differences (deformation vector) between epochs t(0) 

and t(i). To testing can be use, e.g., test statistics TG for 

the global test 

 212
0

T1

Ĉd
G f,fF

sk

ˆdˆd
T 

 CQC
,   (11) 

where  Ĉd
Q  is cofactor matrix of the final 

deformation vector Ĉd , k is coordinate numbers 

entering into the network adjustment (k = 3 for 3D 

coordinates) and 2
0s

 
is posteriori variation factor 

(square) common for both epochs  0t  and  it .     

The critical value TKRIT is searched in the tables of F 

distribution (Fisher–Snedecor distribution) according 

to the degrees of freedom f1 = f2 = n-k or f1 = f2 = n-k+d, 

where n is number of the measured values entering into 

the network adjustment and d is the network defect at 

the network free adjustment. Through the use of 

methods MINQUE is     1sss 2
0

2
0

2
0

it0t   [25].  

The test statistics T should be subjugated to a 

comparison with the critical test statistics TKRIT. TKRIT is 

found in the tables of F distribution according the 

network stages of freedom.  

Two occurrences can be appeared:  

 TG  TKRIT: The null-hypothesis H0 is accepted, 

i.e., the coordinate values differences 

(deformation vectors) are not significant;  

 TG  TKRIT: The null-hypothesis H0 is refused: i.e., 

the coordinate values differences (deformation 

vectors) are statistically significant. In this case 

the deformation with the confidence level  is 

occurred. Table 1 presents the results of the 

global testing of the geodetic network 

congruence for the selected points. 

3.3 Results in the Case of Košice-Bankov 

It will be clear that both polynomials with and 

without a break point may result from the procedure 

described in the previous paragraph. In this section 

examples of estimated polynomials in the study case 

Košice-Bankov are presented and discussed.  

In the following the test quotient belonging to the 

overall model test is denoted by OM-test (refer to Table 

2) [24, 25]: 

 

Table 1  Test statistics results of the geodetic network points at the monitoring station Košice-Bankov. 

Benchmark No.  < ,  ,  > F Notice 

2 1.297 < 

 
 
 

3,724 

 
 

deformation vectors are not significant

3 3.724  

30 3.501 < 

38 3.724  

104 2.871 < 

105 1.403 < 

227 2.884 < 

 

 iGT 




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Table 2  Test quotients overview. 

Benchmark No. 

Quotients 

Break point [] Test 

w OM B 01 02 

8 1.826 0.779 1.995 2.189 1.521 0 

109 7.691 2.238 7.796 4.381 5.146 100 

112 6.175 2.002 7.013 4.199 4.903 100 

306 6.070 1.908 6.510 4.056 4.216 70 
 

Benchmark No. 8: The behaviour of this benchmark 

caused the original null-hypothesis to be rejected. The 

validation of the alternative hypotheses, as specified 

before identified an extra parameter for the polynomial 

to be the most likely alternative hypothesis. After the 

adaptation of this alternative hypothesis as the new 

null-hypothesis, the overall model test value became 

0.9733, which is clearly smaller than its critical value 

of 1.548 (the significance level of   = 5% to derive 

deviation mean height values). Hence a quadratic 

polynomial model was accepted. 

Benchmark No. 109: This benchmark is a clear 

(typical) example of the break point estimation at the 

point in time of 1986 (autumn). After adapting the 

model including a polynomial break point as the 

null-hypothesis, the order of the polynomial after the 

break point was determined to be of the order two. 

Benchmark No. 112: This benchmark is also a clear 

(typical) example of the break point estimation with 

two breaks: at the point in time of 1986 (autumn) and 

1995 (spring). The null-hypothesis with the polynomial 

determined to be of order two can be again considered 

of the null-hypothesis in time of 1986-1997. And the 

polynomial is determined to be of the order three after 

time of 1988. 

Benchmark No. 306: For this benchmark the original 

null-hypothesis, assuming a linear subsidence, was 

accepted. The overall model test statistics was 

determined to be of 0.468 which is clearly smaller than 

the critical value of 0.85. However, the first epoch 

(spring 1990) was considered as a break point possibility. 

And the alternative hypothesis after the break point was 

accepted as the polynomial of order two. 

The graphical representations of the tested 

benchmarks are in Fig. 11. Fig. 12 shows the 

panoramic view to the subsidence Košice-Bankov with 

the eastern edge of this subsidence (1983 and 2000). 

Fig. 13 presents the same panoramic view like Fig. 5 

but after the reclamation of the subsidence and 

surrounding mining landscape (2015). 
 

 
Fig. 11  The polynomial model: Profiles 0, I and III, benchmarks No. 8, 109, 112 and 30. 
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Fig. 12  The subsidence Košice-Bankov before reclamation; panoramic views – years: 1983(A), 2000(B). 

 

 

Fig. 13  The subsidence Košice-Bankov after reclamation; panoramic view – year: 2015. Solar panels: on a site of the former 

mining dumps; Afforestation (in the background): on a site of the former mining subsidence. 
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4. GIS Applications 

GIS (Geographical Information Systems) of the 

interested area is based on the next decision points [24, 

25]:  

 basic and easy data presentation,  

 basic database administration,  

 wide information availability.  

The best viable solution is to execute GIS project as 

the Free Open Source application available on Internet. 

The general facility feature is free code and data source 

viability through the HTTP and FTP protocol located 

on the project web pages. Inter among others features 

range simple control, data and information 

accessibility, centralized system configuration, 

modular stuff and any OS platform (depends on PHP, 

MySQL and ArcIMS port) [9, 11, 27, 28].  

Network based application MySQL is in a present 

time the most preferred database system on Internet. 

This database is relational database with relational 

structure and supports SQL language. At the present 

time MySQL 4.0 is released and supports transaction 

data processing, full text searching and procedure 

executing. PHP, which stands for “PHP: Hypertext 

Pre-processor” is a widely used Open Source general 

purpose scripting language that is especially suited for 

Web development and can be embedded into HTML. Its 

syntax draws upon C, Java, and Perl, and is easy to learn.  

The main goal of the language is to allow web 

developers to write dynamically generated web pages 

quickly, but you can do much more with PHP. The 

database part of GIS for the subsidence Košice-Bankov 

at any applications is running into MySQL database 

(Fig. 14).  
 

 
Fig. 14  ArcView user interface Entity visualization (A, B); MicroStation V8 with Terramodeler MDL application (C); 
Screenshot of ARC IMS - Application internet interface (D, E). 
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PHP supports native connections to many databases, 

for example MySQL, MSSQL, Oracle, Sybase, 

AdabasD, PostgreSql, mSQL, Solid, Informix. PHP 

supports also older database systems: DBM, dBase, 

FilePro, PHP etc. can communicate with databases 

with ODBC interface and this feature represents PHP 

to work with desktop applications supporting ODBC 

interface. PHP cans attend to another Internet services, 

because includes dynamics libraries of some Internet 

protocols (i.e., HTTP, FTP, POP3, SMTP, LDAP, 

SNMP, NNTP, etc.) [24, 25]. 

5. Conclusion 

The examples of the chosen benchmarks taken from 

the monitoring station Košice-Bankov can give an 

overview of some resulting polynomial models, 

representing trends in the deformation developments 

over an extracted mine space theory of the estimated 

subsidence polynomial break points follows out from a 

consideration of 1D deformation model of monitoring 

points. Similar 3D deformation model analysis at the 

polynomial break points can be taken into 

consideration. It will be the subject of a future research 

of the estimated differential polynomial points in the 

subsidence. Knowledge about the edges of the 

undermine areas on the surface (edges of the mining 

subsidence) certainly can be helpful to the environment 

protection as well as to human live and property 

protection. 

Given the fact that extraction of magnesite has been 

completed at the mine Košice-Bankov and these mine 

workings are abandoned since the end of the 90-years 

of the last century, the municipality of the city of 

Košice adopted the plan for the reclamation of that 

mine landscape. The mining subsidence and by mining 

activities devastated all surroundings around the mine 

plant of huge proportions (mining dumps, excavations 

and ponds, etc.) began gradually to backfill by the 

secondary imported soil. On the territory of the former 

extensive mine subsidence area the forest park 

Kosice-Bankov is built as the environmental 

green-forest part of the urban recreation area of the city 

of Košice. The mining subsidence began to gradually 

backfill by imported natural material. On the territory 

of the former extensive mining subsidence area the 

forest park Košice-Bankov was built as the 

environmental green-forest part of the urban recreation 

area of the city of Košice [25].  

The municipality of the city of Košice has 3D model 

of the mining subsidence Košice-Bankov in GIS with 

possibilities of modelling natural and industrial 

disasters, which largely can be the helpful tools for 

many reclamation works in the landscape ecosystem 

restoration with the basic elements of safety measures 

against possible unforeseen and possible consequences 

of the former mining activities to protect the health and 

lives of people moving in the forest park in the former 

magnesite mine Košice-Bankov [12].  
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