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1. Introduction

In numerical analysis,truncation error is the error 

made by truncating an infinite sum and approximating 

it by a finite sum which is present even with 

infinite-precision arithmetic often caused by truncation 

of the infinite Taylor seriesto form the algorithm [1]. 

Truncation error also includes discretization error, 

which is the error that arises from taking a finite 

number of steps in a computation to approximate an 

infinite process. For example, in some numerical 

methods for ordinary differential equations, the 

continuously varying function that is the solution of the 

differential equation is approximated by a process that 

progresses step by step, and the error that it entails a 

discretization or truncation error [9]. 

Occasionally, round-off errorwhich is the 

consequence of using finite precision floating point 

numberson computers is also called truncation error, 

especially if the number is rounded by truncation. 

In this paper, emphasis is laid on the discretization 

error. 

Definition 1.0 

Discretization error is the error introduced by 

transferring the ODEs into equivalent difference 
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equation [5]. We can put together the main sources of 

error in Numerical analysis as 

(a) Error introduced in the process of transforming a 

real world problem into a mathematical problem. This 

error is introduced during the process of modeling. 

(b) Errors due to blunders and mistakes. These 

errors are introduced during the process of 

computation. This mistake may be during the 

programming process or during the implementation of 

the computational procedure. 

(c) Many problems involve collection of physical 

data, and these data contain observation error. Since 

physical data contains errors, one may say here that 

numerical analysis does not remove error but it can 

look at its propagated effects in a calculation. 

Numerical analysis can also suggest the best form for 

a computation that will minimize the propagated 

effects of error in the data. 

2. Comparison of some Numerical Methods

Several numerical analysts have developed 

numerical integrators known as numerical methods to 

generate the numerical solutions to problems of the 

Initial Value Problems of the form 

ݕ ′  ൌ  ݂ ሺݔ, ଴ሻݔሺݕ , ሻݕ  ൌ  ଴      (2.1)ݕ 

Among others are 

2.1 The Euler’s Method 

The Euler method is very simple but not very 
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practical. An understanding of it, however, paves the 

way for an understanding of the more practical 

methods which follows. Let ݕ௡  denote the exact 

solution of the initial-value problem that consists of 

the differential equation. 

i.e. ݕ ′  ൌ  ݂ሺݔ,  ሻ subject to the conditionݕ

଴ሻݔሺݕ  ൌ  ଴ݕ 

leth denote a positive increment in x and let 

ଵݔ  ൌ ଴ݔ  ൅ h. 

In general, we find ݕ௡ାଵ in terms of ݕ௡  by the 

formula 

௡ାଵݕ ൌ ௡ݕ ൅ ݄݂ሺݔ௡,  ௡ሻ        (2.2)ݕ

Which is the numerical scheme called Euler’s 

method [8]. 

2.2 Runge – Kutta Methods. 

The Runge-Kutta methods always use the simple 

Euler estimate as the first estimate of y; hence we 

devise a scheme of choosing the four parameter, a, b, 

, . Thus for the equation 

ݕ ′  ൌ  ݂ሺݔ,  ሻݕ

௡ାଵݕ ൌ ௡ݕ ൅ ܽ݇ଵ ൅ ܾ݇ଶ , 

where ݇ଵ ൌ ݄݂ሺݔ௡, ௡ሻݕ  and ݇ଶ ൌ ݄݂ሺݔ௡ ൅ ,݄ߙ ௡ݕ ൅

 (2.3)  1݇ߚ

We do so by making Eq. (2.3) agree as well as 

possible with the Taylor series expansion, in which 

the y-derivatives are written in terms of , from 

ݕ ′  ൌ  ݂ሺݔ,  ሻݕ

௡ାଵݕ ൌ 

௡ݕ ൅ ݄݂ሺݔ௡, ௡ሻݕ ൅
௛మ

ଶ
݂ ′ሺݔ௡, ௡ሻݕ ൅ ڮ … … … …. (2.4) 

And if we expand ݂ሺݔ,  ሻ in a Taylor series inݕ

terms of ݔ௡,  ,௡ which by substitution and rearrangingݕ

we have 

௡ାଵݕ ൌ ௡ݕ ൅ ሺܽ ൅ ܾሻ݄ ௡݂ ൅ ݄ଶሺܾߙ ௫݂ ൅ ܾߚ ௬݂݂ሻ௡   (2.5) 

This is another numerical scheme for solving initial 

value problems of ODE’s called Runge – 

KuttaMethods [4]. 

2.3 One Step Methods 

With time, simple and accurate numerical methods 

were obtained from imposing some constraints on 

interpolating functions such as it was first developed 

by Fatunla (1976), built upon by Ibijola (2000), 

Oginrinde (2010), Ayinde (2015) and others. Each of 

the schemes are found to be convergence, consistence 

and absolutely stable as all these analysts worked on 

the properties of the methods. 

2.3.1 Fatunla, 1976 Scheme [3] 

௡ାଵݕ

ൌ ௡ݕ

൅ ݄ ቐ ௡݂ െ
ሺߩଵܿߠݏ݋௡ െ ௡ሻߠ݊݅ݏଶߩ ௡݂

ሺଵሻ

ሾሺߩଵ
ଶ െ ଶߩ

ଶሻܿߠݏ݋௡ െ ௡ሿߠ݊݅ݏଶߩଵߩ2

൅  ௡݂
ሺଵሻ݁ఘభ௛

ሾܿߠݏ݋௡ܿݏ݋ሺߩଶ݄ሻ െ ଶ݄ሻߩሺ݊݅ݏ௡ߠ݊݅ݏ െ ௡ሿߠݏ݋ܿ
ሾሺߩଵ

ଶ െ ଶߩ
ଶሻܿߠݏ݋௡ െ ௡ሿߠ݊݅ݏଶߩଵߩ2 ቑ 

(2.6) 

which he derived after imposing some constraints on 

the Interpolating function 

ሻݔሺܨ ൌ  ܽ଴ ൅  ܽଵݔ ൅ ܾ݁ఘభ௫ܿݏ݋ሺ ߩଶݔ ൅  ሻ   (2.7)ߪ

 

2.3.2 Ibijola,2000Scheme [6] 

௡ାଵݕ ൌ

௡ݕ ൅ ݄ሾ ௡݂ െ ൜ ௡݂
ሺଵሻ െ

ሾ൫ఘభ
మିఘమ

మ൯௖௢௦ఏ೙ିଶఘభఘమ௦௜௡ఏ೙ሿ௙೙
ሺమሻ

൫ఘభ
యିଷఘభఘమ

మ൯௖௢௦ఏ೙ା൫ఘమ
యିଷఘమఘభ

మ൯௦௜௡ఏ೙
ሾܽ ൅ ݄݊ሿ െ ሾఘభ௖௢௦ఏ೙ିఘమ௦௜௡ఏ೙ሿ௙೙

ሺమሻ

൫ఘభ
యିଷఘభఘమ

మ൯௖௢௦ఏ೙ା൫ఘమ
యିଷఘమఘభ

మ൯௦௜௡ఏ೙
ൠሿ  

൅ሼ ௡݂
ሺଵሻ െ

ሾ൫ఘభ
మିఘమ

మ൯௖௢௦ఏ೙ିଶఘభఘమ௦௜௡ఏ೙ሿ௙೙
ሺమሻ

൫ఘభ
యିଷఘభఘమ

మ൯௖௢௦ఏ೙ା൫ఘమ
యିଷఘమఘభ

మ൯௦௜௡ఏ೙
ሽ݄ܽ ൅ 1

2ൗ ൜ ௡݂
ሺଵሻ െ

ሾ൫ఘభ
మିఘమ

మ൯௖௢௦ఏ೙ିଶఘభఘమ௦௜௡ఏ೙ሿ௙೙
ሺమሻ

൫ఘభ
యିଷఘభఘమ

మ൯௖௢௦ఏ೙ା൫ఘమ
యିଷఘమఘభ

మ൯௦௜௡ఏ೙
ሺ2݊ ൅ 1ሻ݄ଶ  

൅݁ఘభ௛
ሾܿߠݏ݋௡ܿݏ݋ሺߩଶ݄ሻ െ ଶ݄ሻߩሺ݊݅ݏ௡ߠ݊݅ݏ െ ௡ሿߠݏ݋ܿ ௡݂

ଶ

ሺߩଵ
ଷ െ ଶߩଵߩ3

ଶሻܿߠݏ݋௡ ൅ ሺߩଶ
ଷ െ ଵߩଶߩ3

ଶሻߠ݊݅ݏ௡
ቋ 

(2.8) 
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This was also obtained from the interpolating function after adding a term to the function. 

ሻݔሺܨ ൌ  ܽ଴ ൅  ܽଵݔ ൅  ܽଶݔଶ ൅  ሺ ℮ఘ௫ାఓሻ                      (2.9)݈ܽ݁ݎܾ

2.3.3 Ogunrinde, 2010 Scheme[7] 

Therefore, her new scheme is 

௡ାଵݕ ൌ ௡ݕ ൅ ൝ ௡݂ െ ൥ ௡݂
ሺଵሻ െ ൭ ௡݂

ሺଶሻ െ
ሾሺߩଵ

ଷ െ ଶߩଵߩ3
ଶሻܿߠݏ݋௡ ൅ ሺߩଶ

ଷ െ ଵߩଶߩ3
ଶሻߠ݊݅ݏ௡ሿ ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൱൩ ሺܽ ൅ ݄݊ሻ 

െ 1
2ൗ ൥ ௡݂

ሺଶሻ െ
ሾሺߩଵ

ଷ െ ଶߩଵߩ3
ଶሻܿߠݏ݋௡ ൅ ሺߩଶ

ଷ െ ଵߩଶߩ3
ଶሻߠ݊݅ݏ௡ሿ ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൩ ሺܽ ൅ ݄݊ሻ 

   െ ൥
ሾߩଵܿߠݏ݋௡ െ ௡ሿߠ݊݅ݏଶߩ ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൩ൡ ݄ 

൅ ൥ ௡݂
ሺଵሻ െ ൭ ௡݂

ሺଶሻ െ
ሾሺߩଵ

ଷ െ ଶߩଵߩ3
ଶሻܿߠݏ݋௡ ൅ ሺߩଶ

ଷ െ ଵߩଶߩ3
ଶሻߠ݊݅ݏ௡ሿ ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൱൩ ሺܽ ൅ ݄݊ሻ 

െ
ሾሺߩଵ

ଶ െ ଶߩ
ଶሻܿߠݏ݋௡ െ ௡ሿߠ݊݅ݏଶߩଵߩ2 ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൩ൡ ሺ2݄ܽ ൅ ሺ1 ൅ 2݊ሻ݄ଶሻ 

൅ 1
6ൗ ൝൥ ௡݂

ሺଶሻ െ
ሾሺߩଵ

ଷ െ ଶߩଵߩ3
ଶሻܿߠݏ݋௡ ൅ ሺߩଶ

ଷ െ ଵߩ3
ଶߩଶሻߠ݊݅ݏ௡ሿ ௡݂

ሺଷሻ

ሺߩଵ
ସ ൅ ଶߩ

ସ െ ଵߩ6
ଶߩଶ

ଶሻܿߠݏ݋௡ ൅ ሺ4ߩଵߩଶ
ଷ െ ଵߩ4

ଷߩଶሻߠ݊݅ݏ௡
൩ ሺ3ܽଶ݄ ൅ ݄ܽଶሺ3 ൅ 6݊ሻ ൅ ݄ଷሺ3݊ଶ ൅ 3݊ ൅ 1ሻ 

൅ ቈ
݁ఘభ௛ሾܿߠݏ݋௡ܿݏ݋ሺߩଶ݄ሻ െ ଶ݄ሻߩሺ݊݅ݏ௡ߠ݊݅ݏ െ ௡ሿߠݏ݋ܿ ௡݂

ଶ

ሺߩଵ
ଷ െ ଶߩଵߩ3

ଶሻܿߠݏ݋௡ ൅ ሺߩଶ
ଷ െ ଵߩଶߩ3

ଶሻߠ݊݅ݏ௡
቉ቋ 

(2.10) 
 

Obtained from the interpolating function 

ሻݔሺܨ ൌ

 ܽ଴ ൅  ܽଵݔ ൅  ܽଶݔଶ ൅ ܽଷݔଷ ൅  ሺ ℮ఘ௫ାఓሻ (2.11)݈ܽ݁ݎܾ

Comparing these three schemes that performed 

effectively in solving the initial value problem of 

ODE’s, it is very easy to conclude that numerical 

methods derived from interpolating functions can be 

effective as those of Euler and Runge – Kutta. 

2.3.4 Ayinde, 2015 scheme [2] 

With this motivation, Ayinde in 2015 formulated 

another new interpolating function of the form 

ሻݔሺܨ ൌ ሺߙଵ ൅ ଶሻ݁ିଶ௫ߙ ൅ ଶݔଷߙ ൅ ݔସߙ ൅  ହߙ

which is capable of solving the initial value problems 

of both first order and second order ODE’s. The 

scheme derived was 

௡ାଵݕ ൌ ௡ݕ െ
1
8 ௡݂

ଶሺ݁ିଶ௛ െ 1ሻ ൅
1
2

ሺ ௡݂
ଵ ൅

1
2 ௡݂

ଶሻ݄ଶ

൅ ሺ ௡݂ െ
1
4 ௡݂

ଶሻ݄ 

(2.12) 

3. Comparison of Some Experimental Results 

The establishment of numerical algorithm for the 

initial value problems of first order differential 

equation is essential and can be expressed as one – step 

methods. The experimental results are compared to 

show the robustness and effectiveness of the schemes. 

Example 1. Solution to the initial value problem 

ݕ ′ ൌ ሺ0ሻݕ   ,ݕ ൌ 1, 
0 ݈ܽݒݎ݁ݐ݊݅ ݄݁ݐ ݊݅ ൑ ݔ ൑ 1, The analytical solution 

ሻݔሺݕ ൌ ݁௫,   ݄ ൌ 0.1 
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Table 1 

Xn FATUNLA IBIJOLA OGUNRINDE AYINDE ANALYTICAL 

 1976 2000 2010 2015 SOLUTION 

[0.00] [1.0000000] [1.000000000] [1.0000000] [1.00000000] [1.00000000] 

[0.10] [1.1051709] [1.051640000] [1.1051710] [1.10515866] [1.10517092] 

[0.20] [1.2214028] [1.221388000] [1.2214029] [1.22138920] [1.22140276] 

[0.30] [1.3498588] [1.349834000] [1.3498590] [1.34984383] [1.34985880] 

[0.40] [1.4918247] [1.491788000] [1.4918250] [1.49180815] [1.49182470] 

[0.50] [1.6487213] [1.648670000] [1.6487217] [1.64870298] [1.64872127] 

[0.60] [1.8221188] [1.822051000] [1.8221194] [1.82209858] [1.82211880] 

[0.70] [2.0137527] [2.013666000] [2.0137574] [2.01373036] [2.01375271] 

[0.80] [2.2255409] [2.225431000] [2.2225418] [2.22551624] [2.22554093] 

[0.90] [2.4596031] [2.459660000] [2.4596043] [2.45957582] [2.45960311] 

[1.00] [2.7182818] [2.718114000] [2.7182832] [2.71825166] [2.71828183] 
 

Table 2 

Xn IBIJOLA OGUNRINDE AYINDE ANALYTICAL 

 2000 2010 2015 SOLUTION 

[0.00] [.1000000D+01] [1.0000000] [1.00000000] [1.00000000] 

[0.01] [.1020202D+01] [1.0131134] [1.02020265] [1.02020270] 

[0.02] [.1040822D+01] [1.0278106] [1.04082178] [1.04082188] 

[0.03] [.1061875D+01] [1.0442104] [1.06187465] [1.06187480] 

[0.04] [.1083379D+01] [1.0624568] [1.08337945] [1.08337966] 

[0.05] [.1105355D+01] [1.0827245] [1.10535532] [1.10535559] 

[0.06] [.1127822D+01] [1.1052264] [1.12782246] [1.12782279] 

[0.07] [.1150802D+01] [1.1302241] [1.15080217] [1.15080257] 

[0.08] [.1174317D+01] [1.1580412] [1.17431695] [1.17431743] 

[0.09] [.1198391D+01] [1.1890826] [1.19839059] [1.19839114] 

[0.10] [.1223048D+01] [1.2238612] [1.22304824] [1.22304888] 
 

Example 2 

Solution to the initial value problem ݕ ′ ൌ 1 ൅

ሺ0ሻݕ   ,ଶݕ ൌ 1, 

The analytical solution ݕሺݔሻ ൌ ݔሺ݊ܽݐ ൅
గ

ସ
ሻ,   ݄ ൌ

0.01 

4. Error Analysis of the Experimental Results 

1. Error in the solution to the initial value problem 

ݕ ′ ൌ ሺ0ሻݕ   ,ݕ ൌ 1, 
2. Error in the solution to the initial value problem 

ݕ ′ ൌ 1 ൅ ሺ0ሻݕ   ,ଶݕ ൌ 1, 

5. Conclusion and Discussion 

5.1 Discussion 

The problem in Table 1 was solved using the 

schemes (2.6), (2.8), (2.10) and (2.12) and the  

results obtained were compared in Table 3.In    

Table 2,the problem was solved using the schemes 

(2.8), (2.10), and (2.12), the results obtained were 

compared in Table 4.It can be seen that the 

discretization errors obtained as shown in Table 3 and 

Table 4 are sufficiently small in comparison. The 

shoot-out in Graph 2 is as a result of the peculiarity of 

the equation as it approaches singularity point ݔ ൌ
గ

ସ
. 

Hence, this shows that the schemes are very 

accurate,stable,and convergent in solving singularity 

equations. 

5.2 Conclusion 

In this study,we have presented a one-step method  
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Table 3 

ABSOLUTE ERROR ABSOLUTE ERROR ABSOLUTE ERROR ABSOLUTE ERROR 

IN FATUNLA IN IBIJOLA IN OGUNRINDE IN AYINDE 

0.00000000 0.00000000 0.00000000 0.00000000 

0.00000002 0.00000692 0.00000008 0.00001226 

0.00000002 0.00001476 0.00000014 0.00001356 

0.00000000 0.00002480 0.00000020 0.00001497 

0.00000000 0.00003670 0.00000030 0.00001655 

0.00000003 0.00005127 0.00000043 0.00001829 

0.00000000 0.00006780 0.00000060 0.00002022 

0.00000001 0.00008671 0.00000069 0.00002235 

0.00000003 0.00010993 0.00000087 0.00002469 

0.00000001 0.00005689 0.00000119 0.00002729 

0.00000003 0.00016783 0.00000137 0.00003017 
 

 
Graph 1. Error analysis comparison of some experimental results. 
 

Table 4 

ERROR IN ERROR IN ERROR IN 

IBIJOLA OGUNRINDE AYINDE 

0.000000 0.000000 0.000000 

0.000001 0.007089 0.000000 

0.000000 0.013011 0.000000 

0.000000 0.017664 0.000000 

0.000001 0.020923 0.000000 

0.000001 0.022631 0.000000 

0.000001 0.022596 0.000000 

0.000001 0.020578 0.000000 

0.000000 0.016276 0.000000 

0.000000 0.009309 0.000001 

0.000001 0.000812 0.000001 

0.00000000

0.00002000

0.00004000

0.00006000

0.00008000

0.00010000

0.00012000

0.00014000

0.00016000

0.00018000

1 2 3 4 5 6 7 8 9 10 11

Y
n

Xn

ERROR ANALYSIS IN THE FOUR RESULTS

ABSOLUTE ERROR ABSOLUTE ERROR ABSOLUTE ERROR ABSOLUTE ERROR
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Graph 2. Error analysis comparison of some experimental results. 
 

that can perform favourably with those developed by 

Euler and Runge-Kutta. The interpolating functions 

formed to obtain the numerical method were accurate 

and hence can be extended. 

These methods may therefore be found useful in 

solving problems involving oscillatory and 

exponential problems by considering the accuracy and 

the precision. 
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