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Abstract: Nowadays, the electrochemical water treatments are very important methods used for the removal of organic and inorganic 
impurities from fresh, drinking water and wastewater. The method consists of carrying out the oxidation reaction at the anode where 
pollutants are transferred into non-toxic substances, by decomposing into simpler compounds or transferring into oxidation form. 
RuO2-based Dimensional Stable Anode (DSA) is a technologically good and important electrode for water treatment because of its 
unique characteristics such as high thermal and chemical stability, low resistivity and low overpotential. This paper reviews the 
methods for fabricating RuO2-based electrodes that can be used in electrochemical water treatment. Depending on the different 
fabrication routes, RuO2 electrodes will possess the different electro-catalytic property and stability. 
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1. Introduction 

RuO2 is a noble and expensive metal oxide; the price 

of ruthenium is about 10 times lower than that of 

platinum [1]. Ruthenium is a chemical element that can 

easily adopt various formal oxidation states from −II to 

+VIII in chemical bonds. RuO2 reveals a complex and 

unique redox surface chemistry, acting as a versatile 

oxidation catalyst and electrocatalysis in many 

applications, especially in water treatment [2]. Roughly 

10-15% of the annual production of ruthenium goes 

into the production of such DSA (in 2010 about 3 tons) 

while most of the ruthenium is deployed as buffer 

layers and thin film resistors in the electronic industry 

(about 20 tons) [3]. For being a well-performing 

electrode material in water treatment, four major 

requirements have to be fulfilled: high catalytic activity, 

high stability, high selectivity and high electric 

conductivity [4, 5]. There are many methods to 

fabricating RuO2 electrodes in industry. The synthesis 

methods for RuO2 electrodes should be facile, low cost 

and environmental friendly. 
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2. Green Synthesis of RuO2 Electrode 

2.1 Chemical Vapor Deposition (CVD) 

For model investigations, a well-defined atomic 

structure of RuO2 with a high degree of crystallinity is 

desirable such as RuO2 single crystals which can be 

grown by deposition from the vapor phase. CVD is a 

synthesis process in which the chemical constituents 

react in the vapor phase near or on a heated substrate to 

form a solid deposit [6]. The apparatus is made up with 

three major components: precursors, their handling 

reactors and  the  exhaust  of  by-products. Fig. 1 

represents the CVD process. Most chemical reactions 

in CVD are thermodynamically endothermic, which 

means energy has to be supplied to the reacting system. 

According to the methods of energy input, CVD 

methods can be categorized into thermal, plasma, 

photo and acoustic CVD [7]. The reactor consists of a 

1.5 m quartz tube with inner diameter of 2.0 cm. At one 

end, it is connected with the gas inlet, and at the other 

end, the gas outlet. The inner tube is positioned so that 

the metal source is at the maximum of the furnace. The 

gas flow at the inlet is regulated by microvalves and the 

outlet is evacuated to a fume cupboard. The reactive 

agents  Cl2,  TeCl4  or  O2 are  known  to  carry  the 
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Fig. 1  The chemical processes contributing to CVD growth [6]. 
 

components, Ru and O, in the gas phase, forming 

RuCl3, RuCl4, RuO3/RuO4, RuOnClm, etc. with 

sufficient partial pressures (50 mbar and higher) [7]. In 

general, O2 is used as transporting agent. This bears the 

advantage that only the constituents of Ru-oxides are in 

the reactor, minimizing the impurity level in the grown 

RuO2 single crystals. Oxygen flow (1 bar) is passed 

over polycrystalline RuO2 at 1,600 oK which results in 

a (equilibrium) mixture of RuO3/RuO4 in the gas phase 

according to RuO2 (solid) + n/2O2 (gas) ↔ RuO2+n (gas) 

→ RuO2(s) + O2(g). The outlet zone of the reactor is 

kept at a lower temperature, say 1,450 oK, where the 

gas mixture of RuO3/RuO4 decomposes and RuO2 

crystallizes in the form of 1-3 mm thick blue-black 

plates (up to 6 × 10 mm2). The (101) facet is present on 

most of the growth habits and appears to be the 

predominant orientation, followed by the (100) and 

(110) faces. In order to use these crystals in surface 

science, the sample has to be heated in a vacuum above 

the decomposition temperature (about 1,000 oK) 

resulting in an ultrathin metallic layer capping the 

RuO2 crystal. The vapour growth of these oxides is 

based on the fact that the higher oxides RuO3, RuO4 

exist as vapour at high temperature and decompose to 

give RuO2 at lower temperature [8-10]. 

Metal organic chemical vapor deposition (MOCVD) 

provides another method to form thin RuO2 films. 

However, these films suffer sometimes from carbon 

contamination. With this method, conductive RuO2 

films could be prepared either with (110) or with 

(101)-textured orientations on SiO2/Si (001). The 

structural texture of the RuO2 films can be controlled 

by both temperature and growth rate. The roughness of 

MOCVD-grown RuO2 films can be reduced by 

codeposition of iodine containing molecules. Very 

clean thermally stable Ru films can be produced by 

chemical vapor deposition (CVD) using RuO4 or 

hydrous-RuO2 as the metallic precursor. As a Ru 

precursor, Ru-carbonyls are frequently used and the 

actual oxidation process is assisted by oxygen plasma 

[11-14]. 

2.2 Thermal Decomposition 

DSA-type metal oxides can be prepared in various 

ways, but the most applied procedure in technology is 

the thermal decomposition of appropriate precursors, 

mainly RuCl3 salts, dissolved in suitable solvents and 

painted on the metal substrates, mainly titanium and 

firing the deposit in air or oxygen at 450 oC [6]. The 

thermal decomposition method is preferred, due to its 
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specialties of simple conduction and low cost. The 

painting and firing procedure usually repeated some 

10-12 times to produce a relatively thick conducting 

film. Oxide electrodes prepared by thermal 

decomposition of suitable precursors consist of porous 

layers of sintered crystallites [6]. Fig. 2 shows the 

schematic diagram for the metal-oxide electrodes 

fabrication process with thermal decomposition 

methods. Pretreatment on the metal substrate should be 

conducted before thermal deposition, in order to 

enhance the adhesion of produced metal oxide on the 

substrate. Normally, pretreatment process includes: 

first, thoroughly cleaning of the substrate by organic 

solvent and degreasing agent and second, etching of the 

substrate in concentrated HCl at high temperature for 

30 min to 1 h, to remove the original surface oxides and 

increase the surface roughness. The chemical 

composition, crystallinity and crystal grain size, 

surface morphology, electrical conductance, 

electrocatalysis performance, and electrode stability 

are determined by the precursor composition, solvents 

and loadings, substrate pretreatment, and thermal 

decomposition parameters especially the temperature 

and duration of the preparation and calcinations 

processes [15]. It is reported that RuOx exists with the 

largest amount when annealed at around 450 oC, and 

disappears at 600 oC [16]. Furthermore, the 

morphology of the active layer changes with the 

calcinations temperature and loading level of the 

catalyst. The slight increase in chlorine evolution 

currents with increasing oxide annealing temperature is 

probably due to a small increase in cracks and external 

surface area (Fig. 3) [7]. Porosity and crystallite size 

depend on the calcinations temperature. SnO2 is 

frequently used as an additive in industrial RuO2-based 

electrodes to enhance their selectivity for chlorine 

evolution with respect to oxygen evolution [7]. In a 

recent paper, the chlorine evolution and oxygen 

evolution were studied on well-defined RuO2 

nanocrystals with a typical size of 10-50 nm [17]. 

2.3 Sol-gel 

Both thin and thick RuO2 coatings on Ti substrate 

can be produced by the sol-gel process. Typical film 

thicknesses  achieved  are  several  100 nm  after 

calcinations at 450 oC for 2 h. An approach based on 

the attractive sol-gel route for the preparation of noble 

metal oxides seems to be promising both electrocatalytic 

and stability with oxygen, chlorine evolutions. It has 

been suggested that electrocatalytic properties and 

stability of DSA can be significantly improved if the 

active coating is prepared by a sol-gel procedure, as an 

alternative to the commonly used preparation procedure 

that involves thermal decomposition of metal chlorides 

[18]. The improvement is due to an enlargement of the 

active coating surface area and increased contribution 

of the so-called geometric catalytic factor caused by the 

formation of finely dispersed oxide particles during the 

sol-gel procedure. The electrochemical behavior for 

the chlorine evolution depends sensitively on the aging 

time  of  RuO2  and TiO2  sols [19]. A  typical 

cracked-mud morphology of a RuO2-based DSA is 

depicted in Fig. 4 [19]. The formation of “cracks” in a 

catalytic layer during synthesis is typically achieved by 

inducing a large enough tensile stress in the layer. 

During the process of sol-gel synthesis, a wet layer of 
 

 
Fig. 2  Schematic diagram of thermal decomposition method for making DSA type electrodes [6]. 
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Fig. 3  Current-voltage plots for chlorine evolution in 5 M 
NaCl + 0.1 M HCl [7]. 
 

 
Fig. 4  A typical cracked-mud morphology of a 
RuO2-based DSA [19]. 
 

salt precursors of the catalyst is deposited on a solid 

substrate. After drying, the catalyst is exposed to 

thermal annealing to transform it into the active state. 

The volume change of the gel-body during the drying 

and thermal treatment steps is restricted by the 

substrate, which results in an internal stress that 

depends on the density change of the coating during 

drying and the mismatch in the coefficients of thermal 

expansion between thin coating and thick substrate. If 

the internal stress is large enough, surface cracks or 

channel cracks may nucleate and release energy. The 

rutile-type solid solution of RuO2 and TiO2 is 

responsible for the catalytic activity and the 

electrochemical stability [20]. Recently, Chen et al. [21] 

synthesized a novel structure of coating which consists 

of active nanocrystals of rutile RuO2/TiO2 supported 

on anatase TiO2. Anatase TiO2 stabilizes the high 

dispersion and inhibits the growth and agglomeration 

of active rutile particles. A common difficulty 

encountered in the preparation [21]. The erosion rate is 

minimal around pH = 1-2, and it increases below pH = 

0.2 due to formation of RuOHCl5
2− and increases above 

a pH value of 4 due to the mixed oxides electro 

coatings ensuring a single phase structure and 

nanoscale catalysts [6]. Owing to the controlled 

hydrolysis and polycondensation reactions, sol-gel 

synthesis of mixed oxides has shown to be superior to 

other synthesis techniques [22]. Crack-free 

Ru0.25Ti0.75O2 coatings have shown to be more 

long-term stable, revealing however lower catalytic 

activity [23]. 

2.4 Reactive Sputtering 

In reactive sputtering, the total pressure with O2 

concentration often shows hysteresis behavior. 

According to a well-accepted model for reactive 

sputtering, the disappearance of the hysteresis is caused 

by the high reactive gas pumping speed of the high 

vacuum pump compared with the gas consumption by 

the target, substrate and walls [24]. Ultrathin Ru (0001) 

films can be deposited on Si (001) by magnetron 

sputtering and subsequently be oxidized at various 

temperatures, exposing molecular oxygen, ozone, NO2 

or plasma-activated O2. To deposit RuO2 thin films on 

dissimilar substrates, sputtering is the most commonly 

used technique. O2 containing plasmas are frequently 

utilized for Ru etching [25, 26]. In the same system and 

at the same partial pressure of argon, a hysteresis was 

obtained while sputtering titanium in an Ar-N2 mixture. 

Slow ruthenium oxidation limits the power that can be 

used in reactive sputtering of RuO2. Therefore all 

depositions were made using 250 W, Ravg was in the 

range 0.5-0.6 nms-1. RuO2 films were deposited by d.c. 

reactive sputtering in an in-line sputtering system on a 
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dynamic substrate in an Ar-O2 atmosphere. Annealing 

RuO2 films at 350 °C in air improved their crystallinity, 

resulting in better matching with the rutile structure. 

The resistivity of RuO2 depended on the O2 

concentration in the sputtering atmosphere. The 

resistivities of the most conductive as-deposited and 

annealed films were about 300 µΩcm and 200 µΩcm. 

Transmittance and reflectance of RuO2 films in the IR 

region had a metallic character. The Drude model was 

applied to the dielectric constants in the spectral range 

of 1.4-0.65 eV. Plasma energies of 4.7 eV and 5.5 eV 

and an electron relaxation time of (4q5) × 10-14 s were 

found for the annealed RuO2 films. RuO2 films can be 

prepared by reactive r.f. sputtering in an O2-Ne gas 

mixture over a wider range of sputtering conditions 

than by sputtering in O2-Ar. This property makes 

reactive sputter deposition in an O2-Ne ambient a 

process that is easy to control. The Ru etching rate can 

be increased by Cl2 addition to O2 plasma. Magnetron 

plasma sputtering or even better reactive sputtering in 

O2 atmosphere produces RuO2 films with a Ru/O film 

stoichiometry of 1:2. These oxide films are in general 

polycrystalline with the typical nanorod morphology, 

although it is also possible to produce X-ray 

amorphous RuO2 films, depending on the substrate 

temperature [27-29]. 

2.5 Electrodeposition 

Electrodeposition has proved to be a simple, 

versatile, one-step and cost effective method with film 

thickness control for electrode preparation [30-36]. 

The two key mechanisms that have been identified as 

the rate determining steps for crystal formation are 

charge transfer and diffusion of supersaturated ions or 

mass transport at the electrode surface. With cathodic 

electrodeposition, metal ions can be precipitated in the 

form of amorphous oxide and hydroxides which are 

transformed into the crystalline oxides by subsequent 

thermal treatment. Zhitomirsky succeeded first in the 

simultaneous electro-deposition of TiO2 and RuO2 onto 

a Ti plate in the form of a mixed oxide layer [37]. Since 

the electrodeposited films are thicker than those 

produced by painting, fewer calcinations steps are 

required to produce a similarly thick DSA coating. The 

electrodeposition of a metal oxide proceeds via a wet 

chemical precipitation induced by a cathodically 

electro-generated base seem very promising [6]. This 

method produces typical morphology with an increase 

of the specific outer surface area, which is the main 

working part during intensive chlorine gas evolution 

[23]. A titanium wire (Goodfellow Metals, 99.9% 

purity, 0.25 cm2 geometrical area) sealed in glass 

served as a substrate for electrodeposition. It was 

polished with emery paper and alumina powder, 

washed with quadruply distilled water. The 

electrodeposition route for a metal oxide preparation 

uses a cathodic reaction to increase the pH locally near 

the electrode surface. The main cathodic reaction to 

produce OH− is the decomposition of water under 

hydrogen evolution as followed reactions [38, 39]: 

O2 + 2H2O + 4e− ↔ 4OH−    (Reaction 1) 

2H2O + 2e− → H2 +2OH−    (Reaction 2) 

These reactions consume H2O, generate OH− and 

increase pH at the cathode. In cathodic deposition, 

metal ions or complexes are hydrolyzed by 

electrogenerated base to form oxide, hydroxide or 

peroxide colloidal particles deposits on cathodic 

substrates. Hydroxide and peroxide deposits can be 

converted into corresponding oxides by thermal 

treatment. The assumed reactions can be represented 

as: 

Ru3+ + OH− → RuOx (OH)y → RuO2  (Reaction 3) 

The cathodic decomposition of water can be 

competed with the cathodic electro-deposition of Ru 

metal: 

Ru4+ + 4e− → Ru       (Reaction 4) 

The anodic electrodeposition of ruthenium was 

carried out galvanostatically from a stirred solution of 1 

gdm-3 RuCl3, 0.1 M HCl (Fluka, puriss.) at a current 

density of 40 mAcm-2 for 15 min at room temperature 

or treated by a potentiodynamic sweeps from -0.2 V to 

+1.2 V us see at 2 Hz for 2 min in 0.5 M H2SO4. 
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3. Conclusions 

RuO2-based Dimensional Stable Anode is a 

technologically good and important electrode for water 

treatment because of its unique characteristics such as 

high thermal, chemical stability, low resistivity and 

low overpotential. There are many green synthesis 

routes for the preparation of RuO2 electrode for water 

treatment. Depending on the different fabrication 

routes, RuO2 electrodes will possess the different 

electro-catalytic property and stability. Thermal 

decomposition and sol-gel are the most common 

methods to prepare RuO2 electrodes. 
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