Journal of Communication and Computer 13 (2016) 125-134
doi:10.17265/1548-7709/2016.03.003

~PUBLISHING

DSL Based on a Meta-Model for Optimization and Better

Exploitation of Cloud Computing

Mehdi Mehdary, EL Habib Ben Lahmar and A. Tragha
MIT | (Information Treatment and Modeling Laboratory) Laboratory, Department of mathematics and computer sciences, Faculty of

Science Ben M’sik, Hassan Il University, Casablanca, Morocco

Abstract: We assume that the hybrid cloud computing model can perfectly meet the users’ needs who want to fully exploit the benefits
of competition from cloud providers to get the best quality service with the most optimized cost. The aim of this paper is to establish an
implementation of meta-model suggested in our previous article for the purpose of creating a DSL specific for cloud computing. We will
introduce the idea of decomposing the meta-model into modules independently distributed on different Clouds that form a hybrid cloud.
These modules will be elementary to clarify the dependencies between units. In the first section of this article we are going to introduce a
short definition of the concept of DSL (domain specific language) as well as some related concepts. In the second section we will
introduce the benefits for the creation of a DSL to develop applications to host in a Cloud Computing environment. The third part
introduces our approach, in the last section we will offer a multitude of tools and technology to facilitate the implementation of a DSL.

Key words: Cloud computing, hybrid cloud, meta-model, application architecture, engineering models.

1. Introduction categories: general languages or GPL (global purpose
language) and specific languages domain or DSL
(domain specific language). The first category is
theoretically designated to solve problems regardless
of their fields and complexity, e.g., Java, C++, C # are
generalists languages and can troubleshoot different
kinds of application problems, such as with C ++ we
can create GUIs, manipulate data bases, create and
control data flow and use sockets to transfer data and
information.

DSLs are full-fledged programming languages, but
in contrast to GPLs they are limited to solving
problems for one area. DSL helps to provide
keywords and ratings for the target domain, using its
concepts and features. Thus it helps to provide an
environment suitable for a field, to directly manipulate
its concepts and their relationships. To define the
concept of DSL Martin Fowler [2] wrote:

2. Definition of DSL “The basic idea of a domain specific language
(DSL) is a computer language that’s targeted to a
particular kind of problem, rather than a general
purpose language that's aimed at any kind of software

This article is to complement an earlier publication
[1] about the deployment in a cloud environment, and
establish a meta-model for the purpose of listing all
the components, that we call functional units required
for the deployment.

This article is composed of a first part introducing a
short definition of the concept of DSM (domain
specific language) and the other concepts related to it,
the second part presents the advantages of the creation
of our DSL for the development of applications which
will be implemented in a cloud computing
environment. In the third part we presents the
approach addressed in this work, followed by a final
section wherein it presents several tools and
technologies to fluency the implementation of a DSL
(domain specific language).

Programming languages can be classified into two

Corresponding author: M. Mehdary, Ph.D. student,
research field: software engineering in cloud computing. problem™.

126 DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

It is important to note that even in DSL we can
identify two types [3] in terms of implementation, so
we distinguish between internal DSLs (internal
language) and external DSLs (external language).

Internal DSL: this type of DSL graft in GPL
(general language) which aims to transform it into a
DSL. It inherits the syntax and features of the host
language. Thus it allows to exploit the features and
access to the libraries written in host language. Also
the pre-compilation spots or pre-interpretation like
validation of syntax, semantics and lexical analysis are
made in the host language environment.

External DSL: This type of DSL can be developed
independently of other host languages. In this case
you have to build a tool to analyze lexically source
code and check syntax and semantics, in the following
we can translate the source code into compressible
code by the machine, or in a code of a GPL which will
be then compiled or interpreted. External DSLs are
more flexible in terms of representation of the
concepts in the target domain, but they require a
significant effort to implement them.

3. The Need for a DSL for Cloud Computing

The need of a DSL for cloud computing is to create
cloud applications that do not depend exclusively on a
single provider. The services delivered by cloud
computing are distinguished by their ease of use,
thanks to the online provisioning process. The
applications run as SAAS (software as service), it
means that users do not need to install and maintain
these applications, users just have to subscribe to a
provider and choose the application in question, then
we can use a browser and the Internet (e.g., in the case
of public cloud or hybrid cloud) to run these
applications.

However, developers of cloud computing solutions
are aware that the area is surrounded by significant
challenges for both the development of SAAS
—based solutions and for the deployment of
applications to one or more suppliers. We will address

some challenges related to the field of cloud
computing by providing a solution based on domain
specific languages to rise these challenges.

Problems related to the process of deploying on
SOA (service oriented architecture) or third in
architecture have been defined in Ref. [4] and are
listed in the following:

e |f the application is made at least two-thirds or
two independent functional units, [1] for example one
for the presentation layer and the other one for the
persistence layer. It will not be possible to have a
statement on the location of the two layers in the
cloud after deployment the fact that Cloud Computing
offers an open environment. This can then lead
conflicts at the connection between these layers.

* The Cloud offers flexibility based on the creation
of similar bodies of a layer or of a functional unit of
the application. Then a simple description of these
bodies would allow to the user to easily modify it.

* Billing in the cloud is based on the principle “I
pay what | eat”, a user can host all parts of its
application in a single virtual machine, or each in a
virtual machine. The billing cost differs from one case
to another. A way to choose one of the above
approaches will add more flexibility to developers.

* Providers allow various deployment mechanisms
based on the services they provide. For example, a
provider offering infrastructure as service use
low-level tools (e.g., SSH, FTP). Other providers that
deliver the platform as a service supports protocols
related to the technologies it implements, such as
WAR:s files to Google App Engine.

The abovementioned challenges can be solved by
various methods, for example you can create a library
to simplify the controls, or create a tool to support
most deployment of providers. But the best way to
proceed is to create a specific language of deployment
area, this solution will abstract all details of
application deployment for the various providers.
Which leads only one way will be used to deploy the
application on different platforms and infrastructures.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing 127

Sledziewski et al. [5] made sure to fix the difficulties
cited by building a DSL easy to learn and use,
however it does not have the flexibility to modify the
generated model because of its graphic form.

The challenges of developing applications for the
cloud are due to diversity of programming platforms
and technologies used by providers. We see today that
each provider of the execution platform for cloud
application uses its own platform and its own
programming technology, such as Windows Azure
uses. Net technology, PHP and causes the notion of
roles (Web Role, Worker Role) while Google App
Engine uses the Python, java, and GO language. This
implies that when we proceed to the migration of an
application or an application portion from a provider
to another, we must resume again the implementations
to adapt to the new service provider, this dependence
can have a significant financial impact, so a provider
can increase the cost of lodging an application without
reason. Another disadvantage is that some
applications are incomplete vis-a-vis the requirements.
because developer can not provide all the needs of an
application [6], this problem can be treated by a
hybrid deployment where the application is distributed
into independent parts that can be transported in
different clouds as needed, then a connection between
the various parts must be performed to ensure
homogeneity of application, and to make services
accessible, and where execution requires collaboration
between several plot of the application deployed in
different cloud environment. In this context, we
consider the first disadvantage, the application
development task can be difficult in view of its
inflexibility, the multitude of technologies and
application architectures supported by each provider.

Specify a common language for the cloud
computing application development can be
advantageous. The most important of these is to
abstract the design details and application
development for developers, especially those who do
not have knowledge in cloud computing and

application architecture, we can so have significant
savings on development time, instead of studying and
treated each provider environments we will have only
coded with a DSL which is responsible for the
translation, and even the selection of provider since
the DSL itself is based on a meta-model that unifies
multiple model of providers, and developers will not
have to seek the intention behind the code. Also with a
DSL we can just let high-level instructions or
implement features that normally require details that
are repeated from one application to another. This will
automatically generate artifacts for the application
source files or configuration files. This will reduce
maintenance costs of the code compared with a GPL
through the use of ratings that directly represent the
concepts of cloud application architecture.

4. The Proposed Approach

It is obvious that before embarking on the
implementation of a specific language area, we have
to pass through a most important step for the success
of a DSL, namely the extraction of all the domain
concepts studied and the relationships between those
concepts. Of course, this step can be done well by
using of ontology to pick up the essential field of
cloud computing architecture, provider, model and
meta-model [1], then identify and represent their
relationships. On the other hand we can use a
modeling language such as UML to design our field
by these charts. On this approach we propose to do
this step by using meta-model cited in Ref. [1] which
may be extended to perform this step. This
meta-model is described in UML representing the
concepts of classes and their relationships in
associations between these classes, it allows to
introduce an architecture for SAAS application design
while merging architectures are relating to current
providers in the market cloud computing like Google
App Engine and Windows Azure. It allows to separate
the design of an application platform and the
provider’s infrastructure, which may be useful to

128 DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

achieve the goal of the proposed DSL.

Then the DSL design can be in the form of two
types of specific domain languages, either an internal
DSL or an external DSL. In the case of an external
DSL, we had to create new tools to edit and compile
the instructions of DSL. The second choice is to use a
framework for a host language, such as Java, to build
the grammar of the DSL and implement it using the
host language tools, then we can use these tools to edit
and compile or interpret the source code of DSL.

Although the two choices are different in their
implementation, the expected goal of DSL is still the
same. Indeed, the DSL should automatically generate
artifacts of an application for the different platforms
desired by the developer. This leads on the one hand
we will use one way to implement most of the
functions of the application, and on the other hand
artifacts generated will be compatible with several
platforms. In fact it is for this goal that the DSL must
be delivered by “Multi-Version” where each version
will correspond to a given platform.

In the case of an internal DSL, developers can
create instances models of the DSL. And they can
change it later to fit the functionality of their
applications. Then once the application is created it
can be deployed in one or more providers platform
according to the deployment model chosen [7], finally
users can use browsers to run the application in the
cloud.

The aim of this work is to show that using DSL for
cloud computing would be a good way to control it
and to exploit it. The following figure (Fig. 1) shows
the approach referred by DSL.

5. Axes of the Proposed Approach

Using meta-model we find that each application
contains functional units used for all case of hybrid

read Configuration.xml

—)

deployment of cloud application:

Persistance Layer;

Business layer;

Presentation layer;

Management resources.

Each unit has properties:

virtual IP;

Communication port;

Protocol;

security element;

Definition of the unit.

Using the XML (markup language), it is possible to
create a file for configuring the application (Fig. 2), in
fact this file contains the functional units and their
configurations. This configuration file contains
configuration information used by DSL to adapt or
customize its running.

The structure of the cloud application is always
relative to the given configuration in the XML file, in
each generation of the application, DSL reads and
detects changes made to the configuration file (XML)
to immediately apply new settings.

The supposed format for XML file (Fig. 3).

oree des
Instances

Nouveaux outils du DSL

DSL Estemne DSL Inteme

Meta-modele pour representer les concepts du Cloud
Computing

Implementer des Selutions de type
/ SAAS
% / deploiement
o5l sesigner

{23

les Utilsateurs finals

Choisir un Langage hote etun
Framework du DSL

Fig. 1 The proposed approach to designing a DSL
dedicated to cloud computing.

Generation of cloud project

Fig. 2 Process of generating an eclipse project.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing 129

<?xmlversion="1.0"encoding="UTF-8"?>
<application>
<AppInfo>
<SolutionName>Gestion Stock</SolutionName>
<Developer></Developer>
<Version>1.0</Version>
</Applinfo>
<persistenceUnit>
<DBMS>Mysql</DBMS>
<hostlp>127.0.0.1</hostlp>
<protocole>tcp</protocole>
<port>3306</port>
<SecurityEI>SSL</SecurityEl>
</persistenceUnit>
<businessModelUnit>
<platform>J2EE</platform>
<framework></framework>
</businessModelUnit>
<presentationUnit>
<presentationLayertechnology>JSP</presentationLayertechnology>
</presentationUnit>
</application>

Fig. 3 Contenu dufichier config.xml.

6. Creation of DSL

Xtext setup from Update Site [8]

Open Eclipse IDE and choose Help -> Install New
Software...

and then click on Add...and enter this Update Site
according to

your version of Eclipse:

http://download.eclipse.org/releases/luna/ (In our
case we have Luna version)

after installing Xtext and restarting Eclipse:

Then click on “Finish”, Eclipse will automatically
create four projects (Fig. 5)

Now we will create the syntax of our DSL.:

opens the syntax file(Fig. 6)

N.B: In this file we just created syntax, later we will
set the working of each command, in view of this
description is not contained in the file.

So far we only defines the syntax, we have to assign
to each control it functioning Open file “Cloud DSL
Generator.xtend”(Fig. 7), this file is always running if
you want to generate LPG from the DSL.

The class Cloud DSL Generator implements the
IGenerator interface that contains the do Generate
procedure:

Question: What is the structure of the application ?

Answer:

Problem: How to create an Eclipse IDE project
with this structure?

Answer: We will define a new type of project under
Eclipse IDE (Cloud Project and cloud module), to do
this we need to create a plug in for Eclipse benefiting
from Eclipse RCP.

The RCP platform provides basic
components to build an application and the core
executive to run it. Furthermore Eclipse RCP is used
to customize Eclipse IDE.

N.B: we have to install the SDK of Eclipse (help ->
Install New Software
->http://download.eclipse.org/eclipse/updates/4.4)

After installing the Eclipse SDK' and restarting
Eclipse, we will add a wizard, click twice on the
plugin.xml, then click the Extensions tab above :

After creating of our wizard (Fig. 12) we test
application:

A new Eclipse IDE instance will run (Fig. 10)

As you see our new project type “Cloud
Application” is added to the list of projects that can be
created, we click on“Next”.

software

130

f# Package Explorer 22 | 252 Plug-ins EE =0
12 org.text.example.CloudDSL;

L= orgutext.example.CloudDSLsdk
] org.xtext.example, CloudDSL tests
(2 orgxtext.example. CloudDSL.ui

Fig. 4 Tree of the xtext project.

=11 o @
Select a wizand
Create an Kbed propect.

Wizards:
et

4 o Moot
F Avet Prcject
1 Kb Progect Freen Easting Ecore Models
Continucus Integraticn
B9 Budd Mot with Buchrmnste
Dxamphes
i Mt Do Model Enample
53 Mtest Simle Adehemetics Examphe
s Mt Shate Machane Exsriphe
Eaamples
£ et Examples
% Hiest Domain-Model Bample

First we will use the wizard
to create the Xtext project:

File -> New -> Project...
->Xtext ->Xtext project

7 . e]

Fig. 5 Wizard for the creation of a xtext project.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

org.xtext.example.CloudDSL : contains syntax
validation, code generator
org.xtext.example.CloudDSL.sdk : contains the
XtextSDK org.xtext.example.CloudDSL tests : contains
the Unit tests

org.xtext.example.CloudDSL.ui : Contains changes that
will add on Eclipse (Eclipse RCP)

& New nest Project B
Mew Xtext Project . =
3 & pesjact with that name sinsacy esists in the workspace. [/
mple CloudDi|
Fill with the name of | "™ ...
Xtext project and the | ssmens e
extension of your et
DSL files
P .
i) Back Cancel

grammar org.xtext.example.mydsl1.CloudDSL withorg.eclipse.xtext.common.Terminals
generatecloudDSL "http://www.xtext.org/example/myds|1/CloudDSL"

Model:

(types+=Type)*(instances+=Instance)*(connections+=connection)*;

connection:

"Connection"name=ID "database="db=STRING "user="user=STRING "pass="pass=STRING;

Type:

Entity;

Entity:
‘Entity'name=ID '{’
Instance:
"new"ob_name=ID entity=[Entity]"("(inits+=Init)*")";
Property:

(type="Int«|»String") name=ID (PK="PK")? (value=STRING)?;

(properties+=Property)*}';

4 [P orgxtext.example.CloudDSL
a 5% src
4 3 orgxtext.example.mydsil
» [¥] CloudDSLRuntimeModule java
» [¥] CloudDSLStandaloneSetup java
| Ix] CloudDSLatext| |
[F| GenerateCloudDSL.mwe2
» H orgatext.example.mydsll formatting
» 12 orgatext.example.mydsil.generator
» H orgatest.example.mydsil.scoping
- H orgatext.example.mydsil.validation

mrh

Fig. 6 Syntax of our DSL.

s

4 = orgatext.example CloudDSL
a [sre
4 1 orgatext.example.mydsil
- [¥] CloudDSLRuntimeMeodule.java
» |4 CloudDSLStandaloneSetup.java
CloudDSL xtext
[¥ GenerateCloudDSL.rmwe2
. B2 orgatest.example.mydsll formatting
a 5 orgatext.example.mydsll.generater
1#| CloudDSLGeneratoradtend
B2 orgatext.example.mydsll.scoping
. B2 orgatext.example.mydsll.validation
. 2 src-gen
- [xtend-gen
- =4 JRE System Library [JavaSE-1.8]
« = Plun-in Nenendenrcies

Fig. 7 Path of the xtend file relative to xtext file.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing 131

Fig. 8 Tree of the generated project.

Projet Src : contains the DSL extension files

Src Ressources: Contains the resources used in the project (images, text file, xml file ...)
Resources Src-gen: contains the application generated by the DSL

Src-gen Configuration.xml : DSL configuration file

» 2B src
- [src-gen

=l

. 5;5 org.xtext.example. CloudD5L

. l=F orgatext.example.CloudDSL.sdk
. [orgatext.example.CloudDSL.tests
4 15 org.xtext.example. CloudD5L.ui

. [xtend-gen
» B JRE Systemn Library [JavaSE-1.8]
» B Plug-in Dependencies
¢ = META-INF
b build.properties
J'ﬂ: plugin.xrml
plugin.xml_gen

Fig. 9 Path of the plug in file relative to the generated project.

ot ShapeaCrestizoisard v - Erbnt

© - Dmescprmant - e

\ ¢ | b BTl T e n e Al R e

CleadcP

Fig. 10 New Eclipse IDE instance.

As shown in Fig. 12 our wizard has created the
project and has implemented the configuration.xml
file with the parameters entered in the wizard:

Once the project is created, the editor of Eclipse
automatically opens the file “test.cdsl”

add this content to the file“test.cdsl™ :

The command: Connection —accepts 4 arguments,
it serves to make a connection with the persistence
unit within the parameters mentioned in
configuration.xml

The command: Entity —used to create ORM,
generate class (constructors, getters, setters ...)

132 DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

uifsrcforgfxtext/example/clouddsl/ui/CloudWizard.java - Eclipse

roject Run

Window Help

R R R A C T2 AR I AR I
<§‘> [¥] 1 Generate Language Infrastructure (orgxtext.example.CloudDSL) oudy
& 2 Eclipse Application
Run As r Isele
Run Configurations...
emen
Organize Favorites...
pay PUDITC CIOUOWIZarar] §
#=11 // TODO Auto-generated constructor stub
12 1

IDSLuifsrcforg/xtext/example/clouddsl/ui/CloudWizard, java - Eclipse
1 Project Run

Window Help

-0 -Q-H G ® T -G e -

= <;===.> [F] 1 Generate Language Infrastructure (org.xtext.example.CloudDSL) oud\Wiz
& 2 Eclipse Application
Run As » idselec
Run Configurations...
QOrganize Favorites...
P I IS S IO ORI T T e TENOs W ITaroImp Lement
42 protected static final String ALL = nullj
43 public Stepl pagel = new Stepl();
4 public Step2 page2 = new Step2();
45 public Step3 page3 = new S5tep3();
46 private WizardNewProjectCreationPage _pag

47 private IProject _newProject;

Fig. 11 New content used for the generation of the target language and the generation of a new type of project.

Step 1: Project type Step 2: Name and path Step 3 : Details of the

selection of the project project Step 4 : parameters of
& e [i ° [il) ==) M o A =S
Selocka wiiand —, Cloud Prajost Cloud Application Cloud Appliestion
I Cioud Application Pararmitres lurité de persistance Paramétres de a schition
Wi Project nome: FirsiClaudProject
e ¥] Use defautt location Unicé de persstance Mom de ls Schation: Gestion Sock
© o= CkrYourDentaBerveruntime: EcipsehppicabiontFist] | Browse. [sat sever - Version: 10
G Inteface » Deve
i Josa et B 177001 o
Preyectfrom Cuisting Ant Buichie
2 Pgin Project | Protocole:
e Il e]
+ & i Eppicsion =
@ Ooud Module
& Coudfmpert e
05 Couche de securité |
= Echpse Modeling Framewerk. [m ;.]
]
3 e [i
, Gk [Bes Gancd | @ <Back | o Cancl % —— —) prerem | e i)
— L.
i
o (.8]
Cloud Application
Puents D Couche s
i u —
S Add Xtext Nature = =
——
Couche Présentation:
: T . £ I~
@ Do you want to add the Xtext nature to the project ‘FirstCloudProject 7
l Yes No] ’ Cancel]
@ (BTN T S

Fig. 12 Proposed wizard.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing 133

Modelunit>

form>J2EE</platform>
<framework></framework>

</businessModelUnit>

£ Java EE - FirstCloudProject/configuration.xml - Eclipse SDK SRRCE <
File Edit Source Mavigate Search Project Sample Menu Run Sample Menu Window Help
D H @R HISRIH G IR A ORI A v v o
Quick Access || B | & Java [¢S JavaEE
L5 Project Explorer 53 = O =| test.cdsl [%] configurationxml [¥] *configuration.xml 33 = B8 g= Outline % = ¥ =0
=) <3===> - 1 <?xml version="1.8" encoding="UTF-8"2> P 27 xml
4 3 Cloudl 20 <application> . (€ application
3 <AppInfox
> = app 4 <SolutionName>Gestion Stock</SolutionName>
» [src-gen 5 <Developer></Developer>
[#] configurationxml 3 rsion>1.8</Version>
. [Cloudapp ’ i
s . 8 stencelnit>
4 | FirstCloudProject - <DEMS>MysqL</DENS>
> = app 18 <hostIp>127.8.0.1</hostIp>
» [src-gen 11 <protocolextep</protocole>
|%] configurationxml 12 <port>3386</port>
s (& Servers 13 <SecurityEl>SSL</SecurityEls
. :9 fesst 14 rs encelnit>

ionLayertechnology>

18

19 < presentationUnit>

20 <presentationlLayertechnology>JSP</presentat
21 </presentationUnit>

22 </application»

Fig. 13 Location of the .xml configuration file.

Connection Conl database="test"user="root"pass="1"

EntityPersonne {

Int Id PK
StringFirstName
StringLastName

}

new P1 Personne (
ld=1
FirstName="MEHDI"

LastName="MEHDARY"

)
Fig. 14 Content to the file“test.cdsl”.

L5 Project Explorer &3 ==

» [Cloudl
+ =% CloudApp
4 =5 FirstCloudProject
» L= app
4 [src-gen
|| Database.sql
index.jsp

|%] cenfiguration.xml

Fig. 15 Generated project by DSL.

The automatically generated files:
Database.sql
Index.jsp

Each entity has properties.

The command: new—is used to create instances
(objects, then an Entity already created, it contains the
boot arguments).

ORM: is an object-relational mapping.

If you save the file “test.cdsl” (Fig. 14)
infrastructural language will generate the functional
units within the parameters listed in the file
configuration.xml (Fig. 13).

target language (in our case we choose between
J2EE or PHP) (Fig. 11)

target database (in our case we choose between
MySQL or SQL server)

protocol used

Technology of the presentation layer (J2EE =>
JSP (fig 15); PHP =>twig ou SMARTY)

After save of test.cdsl file, DSL generates the
application.

7. Conclusions

In this paper we addressed the main problem
encountered in cloud computing namely compatibility
issues between suppliers and migration challenges in a
cloud vendor implementation to another. We proposed
a solution that involves establishing a language to
unify the programming an application cloud without
cared provider, we also proposed an approach that can
be used to create the language, namely the creation of
a schedule for the implementation of a functional unit
and for changing these attributes.

DSL has been created to allowing developers the

134

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

ability to compile the functional units of the project to
the platform he wants with the way he wants, and also
to modify or change units whenever he wants. DSL
acquires this flexibility through the Meta model
proposed in our previous article [1].

References

[1]

[2]
(3]

Design a Meta-Model For the Implementation of
Hybrid Cloud, ijareeie, Volume 2, Issue 11, November
2013

http://martinfowler.com/bliki/DomainSpecificLanguage.h
tml.

Paul, L. 2010. “Un Langage Specifique au Domaine Pour
L'outil DE Correction DE Travaux DE Programmation

[4]

[5]

(6]

[7]

(8]

Oto.” Fevrier.

Eirik, B., Parastoo, M., and Sebastien, M. 2012.
“Towards a Domain-Specific Language to Deploy
Application in the Clouds.” .

Krzysztof, S., Behzad, B., and Rachid, A. 2012. “A
DSL-based Approach to Software Development and
Deployment on Cloud.”

Clement, Q., Nicolas, H., Romain, R., and Laurence, D.
2013. “Towards Multi-Cloud Configurations Using
Feature Models and Ontologies.”

Francois, T. 2009. “Cloud computing: Strategie et
Revolution de I'infrastructure Informatique, de la maniere
de concevoir les applications et Leur consommation dans
le nuage sous forme de services.”
Eclipse Documentation.
Documentation.”Octobre 31, 2011.

“Xtext 2.1

