
Journal of Communication and Computer 13 (2016) 125-134
doi:10.17265/1548-7709/2016.03.003

DSL Based on a Meta-Model for Optimization and Better

Exploitation of Cloud Computing

Mehdi Mehdary, EL Habib Ben Lahmar and A. Tragha

MIT I (Information Treatment and Modeling Laboratory) Laboratory, Department of mathematics and computer sciences, Faculty of

Science Ben M’sik, Hassan II University, Casablanca, Morocco

Abstract: We assume that the hybrid cloud computing model can perfectly meet the users’ needs who want to fully exploit the benefits
of competition from cloud providers to get the best quality service with the most optimized cost. The aim of this paper is to establish an
implementation of meta-model suggested in our previous article for the purpose of creating a DSL specific for cloud computing. We will
introduce the idea of decomposing the meta-model into modules independently distributed on different Clouds that form a hybrid cloud.
These modules will be elementary to clarify the dependencies between units. In the first section of this article we are going to introduce a
short definition of the concept of DSL (domain specific language) as well as some related concepts. In the second section we will
introduce the benefits for the creation of a DSL to develop applications to host in a Cloud Computing environment. The third part
introduces our approach, in the last section we will offer a multitude of tools and technology to facilitate the implementation of a DSL.

Key words: Cloud computing, hybrid cloud, meta-model, application architecture, engineering models.

1. Introduction

This article is to complement an earlier publication

[1] about the deployment in a cloud environment, and

establish a meta-model for the purpose of listing all

the components, that we call functional units required

for the deployment.

This article is composed of a first part introducing a

short definition of the concept of DSM (domain

specific language) and the other concepts related to it,

the second part presents the advantages of the creation

of our DSL for the development of applications which

will be implemented in a cloud computing

environment. In the third part we presents the

approach addressed in this work, followed by a final

section wherein it presents several tools and

technologies to fluency the implementation of a DSL

(domain specific language).

2. Definition of DSL

Programming languages can be classified into two

Corresponding author: M. Mehdary, Ph.D. student,

research field: software engineering in cloud computing.

categories: general languages or GPL (global purpose

language) and specific languages domain or DSL

(domain specific language). The first category is

theoretically designated to solve problems regardless

of their fields and complexity, e.g., Java, C++, C # are

generalists languages and can troubleshoot different

kinds of application problems, such as with C ++ we

can create GUIs, manipulate data bases, create and

control data flow and use sockets to transfer data and

information.

DSLs are full-fledged programming languages, but

in contrast to GPLs they are limited to solving

problems for one area. DSL helps to provide

keywords and ratings for the target domain, using its

concepts and features. Thus it helps to provide an

environment suitable for a field, to directly manipulate

its concepts and their relationships. To define the

concept of DSL Martin Fowler [2] wrote:

“The basic idea of a domain specific language

(DSL) is a computer language that’s targeted to a

particular kind of problem, rather than a general

purpose language that's aimed at any kind of software

problem”.

D
DAVID PUBLISHING

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

126

It is important to note that even in DSL we can

identify two types [3] in terms of implementation, so

we distinguish between internal DSLs (internal

language) and external DSLs (external language).

Internal DSL: this type of DSL graft in GPL

(general language) which aims to transform it into a

DSL. It inherits the syntax and features of the host

language. Thus it allows to exploit the features and

access to the libraries written in host language. Also

the pre-compilation spots or pre-interpretation like

validation of syntax, semantics and lexical analysis are

made in the host language environment.

External DSL: This type of DSL can be developed

independently of other host languages. In this case

you have to build a tool to analyze lexically source

code and check syntax and semantics, in the following

we can translate the source code into compressible

code by the machine, or in a code of a GPL which will

be then compiled or interpreted. External DSLs are

more flexible in terms of representation of the

concepts in the target domain, but they require a

significant effort to implement them.

3. The Need for a DSL for Cloud Computing

The need of a DSL for cloud computing is to create

cloud applications that do not depend exclusively on a

single provider. The services delivered by cloud

computing are distinguished by their ease of use,

thanks to the online provisioning process. The

applications run as SAAS (software as service), it

means that users do not need to install and maintain

these applications, users just have to subscribe to a

provider and choose the application in question, then

we can use a browser and the Internet (e.g., in the case

of public cloud or hybrid cloud) to run these

applications.

However, developers of cloud computing solutions

are aware that the area is surrounded by significant

challenges for both the development of SAAS

—based solutions and for the deployment of

applications to one or more suppliers. We will address

some challenges related to the field of cloud

computing by providing a solution based on domain

specific languages to rise these challenges.

Problems related to the process of deploying on

SOA (service oriented architecture) or third in

architecture have been defined in Ref. [4] and are

listed in the following:

 If the application is made at least two-thirds or

two independent functional units, [1] for example one

for the presentation layer and the other one for the

persistence layer. It will not be possible to have a

statement on the location of the two layers in the

cloud after deployment the fact that Cloud Computing

offers an open environment. This can then lead

conflicts at the connection between these layers.

 The Cloud offers flexibility based on the creation

of similar bodies of a layer or of a functional unit of

the application. Then a simple description of these

bodies would allow to the user to easily modify it.

 Billing in the cloud is based on the principle “I

pay what I eat”, a user can host all parts of its

application in a single virtual machine, or each in a

virtual machine. The billing cost differs from one case

to another. A way to choose one of the above

approaches will add more flexibility to developers.

 Providers allow various deployment mechanisms

based on the services they provide. For example, a

provider offering infrastructure as service use

low-level tools (e.g., SSH, FTP). Other providers that

deliver the platform as a service supports protocols

related to the technologies it implements, such as

WARs files to Google App Engine.

The abovementioned challenges can be solved by

various methods, for example you can create a library

to simplify the controls, or create a tool to support

most deployment of providers. But the best way to

proceed is to create a specific language of deployment

area, this solution will abstract all details of

application deployment for the various providers.

Which leads only one way will be used to deploy the

application on different platforms and infrastructures.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

127

Sledziewski et al. [5] made sure to fix the difficulties

cited by building a DSL easy to learn and use,

however it does not have the flexibility to modify the

generated model because of its graphic form.

The challenges of developing applications for the

cloud are due to diversity of programming platforms

and technologies used by providers. We see today that

each provider of the execution platform for cloud

application uses its own platform and its own

programming technology, such as Windows Azure

uses. Net technology, PHP and causes the notion of

roles (Web Role, Worker Role) while Google App

Engine uses the Python, java, and GO language. This

implies that when we proceed to the migration of an

application or an application portion from a provider

to another, we must resume again the implementations

to adapt to the new service provider, this dependence

can have a significant financial impact, so a provider

can increase the cost of lodging an application without

reason. Another disadvantage is that some

applications are incomplete vis-a-vis the requirements.

because developer can not provide all the needs of an

application [6], this problem can be treated by a

hybrid deployment where the application is distributed

into independent parts that can be transported in

different clouds as needed, then a connection between

the various parts must be performed to ensure

homogeneity of application, and to make services

accessible, and where execution requires collaboration

between several plot of the application deployed in

different cloud environment. In this context, we

consider the first disadvantage, the application

development task can be difficult in view of its

inflexibility, the multitude of technologies and

application architectures supported by each provider.

Specify a common language for the cloud

computing application development can be

advantageous. The most important of these is to

abstract the design details and application

development for developers, especially those who do

not have knowledge in cloud computing and

application architecture, we can so have significant

savings on development time, instead of studying and

treated each provider environments we will have only

coded with a DSL which is responsible for the

translation, and even the selection of provider since

the DSL itself is based on a meta-model that unifies

multiple model of providers, and developers will not

have to seek the intention behind the code. Also with a

DSL we can just let high-level instructions or

implement features that normally require details that

are repeated from one application to another. This will

automatically generate artifacts for the application

source files or configuration files. This will reduce

maintenance costs of the code compared with a GPL

through the use of ratings that directly represent the

concepts of cloud application architecture.

4. The Proposed Approach

It is obvious that before embarking on the

implementation of a specific language area, we have

to pass through a most important step for the success

of a DSL, namely the extraction of all the domain

concepts studied and the relationships between those

concepts. Of course, this step can be done well by

using of ontology to pick up the essential field of

cloud computing architecture, provider, model and

meta-model [1], then identify and represent their

relationships. On the other hand we can use a

modeling language such as UML to design our field

by these charts. On this approach we propose to do

this step by using meta-model cited in Ref. [1] which

may be extended to perform this step. This

meta-model is described in UML representing the

concepts of classes and their relationships in

associations between these classes, it allows to

introduce an architecture for SAAS application design

while merging architectures are relating to current

providers in the market cloud computing like Google

App Engine and Windows Azure. It allows to separate

the design of an application platform and the

provider’s infrastructure, which may be useful to

D

128

achieve the g

Then the

types of spe

DSL or an

DSL, we ha

the instructio

framework f

the gramma

host languag

and compile

Although

implementat

same. Indee

artifacts of

desired by t

we will us

functions of

artifacts gen

platforms. In

be delivered

will correspo

In the ca

create instan

change it

applications

can be depl

according to

users can u

cloud.

The aim o

cloud comp

and to explo

the approach

5. Axes of

Using me

contains fun

Fig. 2 Proce

DSL Based o

goal of the pr

DSL design

ecific domain

external DSL

ad to create n

ons of DSL.

for a host lan

ar of the DSL

ge tools, then

e or interpret t

the two ch

tion, the expe

ed, the DSL s

an applicatio

the developer

se one way

f the applica

nerated will

n fact it is fo

d by “Multi-V

ond to a given

ase of an in

nces models

later to fit

. Then once

loyed in one

o the deploym

se browsers

of this work i

uting would

oit it. The fol

h referred by

the Propos

eta-model w

nctional units

ess of generatin

read C

on a Meta-Mod

roposed DSL

n can be in

n languages, e

L. In the cas

new tools to

The second c

nguage, such

L and implem

n we can use t

the source co

hoices are d

ected goal of

should autom

on for the di

r. This leads

to impleme

ation, and on

be compatib

or this goal th

Version” wh

n platform.

nternal DSL,

of the DSL

the functio

the applicat

e or more pr

ment model ch

to run the a

is to show th

be a good w

llowing figur

DSL.

sed Approa

e find that

s used for al

ng an eclipse p

Configuration

del for Optim

L.

the form of

either an inte

se of an exte

edit and com

choice is to u

as Java, to b

ment it using

these tools to

ode of DSL.

different in t

f DSL is still

matically gene

fferent platfo

on the one h

ent most of

n the other h

ble with sev

hat the DSL m

here each ver

 developers

L. And they

onality of t

tion is create

roviders platf

hosen [7], fin

application in

hat using DSL

way to contr

re (Fig. 1) sh

ach

each applica

ll case of hy

project.

n.xml

mization and B

two

ernal

ernal

mpile

use a

build

g the

edit

their

l the

erate

orms

hand

the

hand

veral

must

rsion

can

can

their

ed it

form

nally

n the

L for

rol it

hows

ation

ybrid

dep

P

B

P

M

E

v

C

P

s

D

U

crea

fact

con

con

cust

T

rela

each

dete

to im

T

Fig.
dedi

Better Exploit

ployment of c

Persistance La

Business laye

Presentation l

Management

Each unit has

virtual IP;

Communicatio

Protocol;

ecurity eleme

Definition of t

Using the XM

ate a file for c

t this file co

nfigurations.

nfiguration in

tomize its run

The structure

ative to the gi

h generation

ects changes

mmediately a

The supposed

. 1 The pr
icated to cloud

Gener

tation of Clou

loud applicat

ayer;

r;

ayer;

resources.

properties:

on port;

ent;

the unit.

ML (markup l

configuring t

ontains the fu

This conf

nformation u

nning.

e of the clou

iven configur

n of the app

made to the

apply new set

d format for X

roposed appro
d computing.

ration of clou

ud Computing

tion:

language), it i

the applicatio

functional un

figuration fi

sed by DSL

ud applicatio

ration in the

plication, DS

configuration

ttings.

XML file (Fig

oach to desig

ud project

g

is possible to

on (Fig. 2), in

nits and their

ile contains

 to adapt or

on is always

XML file, in

L reads and

n file (XML)

g. 3).

gning a DSL

o

n

r

s

r

s

n

d

)

L

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

129

<?xmlversion="1.0"encoding="UTF-8"?>
<application>

<AppInfo>
<SolutionName>Gestion Stock</SolutionName>

<Developer></Developer>
<Version>1.0</Version>

</AppInfo>
<persistenceUnit>

<DBMS>Mysql</DBMS>
<hostIp>127.0.0.1</hostIp>
<protocole>tcp</protocole>

<port>3306</port>
<SecurityEl>SSL</SecurityEl>

</persistenceUnit>
<businessModelUnit>

<platform>J2EE</platform>
<framework></framework>

</businessModelUnit>
<presentationUnit>

<presentationLayertechnology>JSP</presentationLayertechnology>
</presentationUnit>

</application>

Fig. 3 Contenu dufichier config.xml.

6. Creation of DSL

Xtext setup from Update Site [8]

Open Eclipse IDE and choose Help -> Install New

Software...

and then click on Add...and enter this Update Site

according to

your version of Eclipse:

http://download.eclipse.org/releases/luna/ (In our

case we have Luna version)

after installing Xtext and restarting Eclipse:

Then click on “Finish”, Eclipse will automatically

create four projects (Fig. 5)

Now we will create the syntax of our DSL:

opens the syntax file(Fig. 6)

N.B: In this file we just created syntax, later we will

set the working of each command, in view of this

description is not contained in the file.

So far we only defines the syntax, we have to assign

to each control it functioning Open file “Cloud DSL

Generator.xtend”(Fig. 7), this file is always running if

you want to generate LPG from the DSL.

The class Cloud DSL Generator implements the

IGenerator interface that contains the do Generate

procedure:

Question: What is the structure of the application ?

Answer:

Problem: How to create an Eclipse IDE project

with this structure?

Answer: We will define a new type of project under

Eclipse IDE (Cloud Project and cloud module), to do

this we need to create a plug in for Eclipse benefiting

from Eclipse RCP.

The RCP platform provides basic software

components to build an application and the core

executive to run it. Furthermore Eclipse RCP is used

to customize Eclipse IDE.

N.B: we have to install the SDK of Eclipse (help ->

Install New Software

->http://download.eclipse.org/eclipse/updates/4.4)

After installing the Eclipse SDK' and restarting

Eclipse, we will add a wizard, click twice on the

plugin.xml, then click the Extensions tab above :

After creating of our wizard (Fig. 12) we test

application:

A new Eclipse IDE instance will run (Fig. 10)

As you see our new project type “Cloud

Application” is added to the list of projects that can be

created, we click on“Next”.

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

130

Fig. 4 Tree of the xtext project.

Fig. 5 Wizard for the creation of a xtext project.

Fig. 6 Syntax of our DSL.

Fig. 7 Path of the xtend file relative to xtext file.

grammar org.xtext.example.mydsl1.CloudDSL withorg.eclipse.xtext.common.Terminals
generatecloudDSL"http://www.xtext.org/example/mydsl1/CloudDSL"
Model:
(types+=Type)*(instances+=Instance)*(connections+=connection)*;
connection:
"Connection"name=ID "database="db=STRING "user="user=STRING "pass="pass=STRING;
Type:
Entity;
Entity:
'Entity'name=ID '{' (properties+=Property)*'}';
Instance:
"new"ob_name=ID entity=[Entity]"("(inits+=Init)*")";
Property:
(type="Int«|»String") name=ID (PK="PK")? (value=STRING)?;

Fill with the name of
Xtext project and the
extension of your
DSL files

First we will use the wizard
to create the Xtext project:

File -> New -> Project...
->Xtext ->Xtext project

org.xtext.example.CloudDSL : contains syntax
validation, code generator
org.xtext.example.CloudDSL.sdk : contains the
XtextSDK org.xtext.example.CloudDSL,tests : contains
the Unit tests
org.xtext.example.CloudDSL.ui : Contains changes that
will add on Eclipse (Eclipse RCP)

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

131

Fig. 8 Tree of the generated project.

Fig. 9 Path of the plug in file relative to the generated project.

Fig. 10 New Eclipse IDE instance.

As shown in Fig. 12 our wizard has created the

project and has implemented the configuration.xml

file with the parameters entered in the wizard:

Once the project is created, the editor of Eclipse

automatically opens the file “test.cdsl”

add this content to the file“test.cdsl” :

The command: Connection —accepts 4 arguments,

it serves to make a connection with the persistence

unit within the parameters mentioned in

configuration.xml

The command: Entity —used to create ORM,

generate class (constructors, getters, setters ...)

Src : contains the DSL extension files

Ressources: Contains the resources used in the project (images, text file, xml file ...)

Src-gen: contains the application generated by the DSL

Configuration.xml : DSL configuration file

Projet

Src

Resources

Src-gen

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

132

Fig. 11 New content used for the generation of the target language and the generation of a new type of project.

Fig. 12 Proposed wizard.

Step 1: Project type
selection

Step 2: Name and path
of the project

Step 3 : Details of the
project Step 4 : parameters of

the persistence layer

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

133

Fig. 13 Location of the .xml configuration file.

Fig. 14 Content to the file“test.cdsl”.

Fig. 15 Generated project by DSL.

Each entity has properties.

The command: new—is used to create instances

(objects, then an Entity already created, it contains the

boot arguments).

ORM: is an object-relational mapping.

If you save the file “test.cdsl” (Fig. 14)

infrastructural language will generate the functional

units within the parameters listed in the file

configuration.xml (Fig. 13).

target language (in our case we choose between

J2EE or PHP) (Fig. 11)

target database (in our case we choose between

MySQL or SQL server)

protocol used

Technology of the presentation layer (J2EE =>

JSP (fig 15); PHP =>twig ou SMARTY)

After save of test.cdsl file, DSL generates the

application.

7. Conclusions

In this paper we addressed the main problem

encountered in cloud computing namely compatibility

issues between suppliers and migration challenges in a

cloud vendor implementation to another. We proposed

a solution that involves establishing a language to

unify the programming an application cloud without

cared provider, we also proposed an approach that can

be used to create the language, namely the creation of

a schedule for the implementation of a functional unit

and for changing these attributes.

DSL has been created to allowing developers the

The automatically generated files:

 Database.sql

 Index.jsp

Connection Con1 database="test"user="root"pass="1"

EntityPersonne {

 Int Id PK
 StringFirstName
 StringLastName
}
new P1 Personne (
 Id=1
 FirstName="MEHDI"

 LastName="MEHDARY"
)

DSL Based on a Meta-Model for Optimization and Better Exploitation of Cloud Computing

134

ability to compile the functional units of the project to

the platform he wants with the way he wants, and also

to modify or change units whenever he wants. DSL

acquires this flexibility through the Meta model

proposed in our previous article [1].

References

[1] Design a Meta-Model For the Implementation of
Hybrid Cloud, ijareeie, Volume 2, Issue 11, November
2013

[2] http://martinfowler.com/bliki/DomainSpecificLanguage.h
tml.

[3] Paul, L. 2010. “Un Langage Specifique au Domaine Pour
L'outil DE Correction DE Travaux DE Programmation

Oto.” Fevrier.
[4] Eirik, B., Parastoo, M., and Sebastien, M. 2012.

“Towards a Domain-Specific Language to Deploy
Application in the Clouds.” .

[5] Krzysztof, S., Behzad, B., and Rachid, A. 2012. “A
DSL-based Approach to Software Development and
Deployment on Cloud.”

[6] Clement, Q., Nicolas, H., Romain, R., and Laurence, D.
2013. “ Towards Multi-Cloud Configurations Using
Feature Models and Ontologies.”

[7] Francois, T. 2009. “Cloud computing: Strategie et
Revolution de l'infrastructure Informatique, de la maniere
de concevoir les applications et Leur consommation dans
le nuage sous forme de services.”

[8] Eclipse Documentation. “Xtext 2.1
Documentation.”Octobre 31, 2011.

