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Abstract: This paper presents a study where artificial neural networks are used as a curve fitting method applying measured data from
an axial compressor test rig to predict the compressor map. Emphasis is on models for prediction of pressure ratio, compressor mass
flow and mechanical efficiency. Except for evaluation of interpolation and extrapolation capabilities, this study also investigates the
effect of the design parameters such as number of neurons and size of training data. To reduce the effect of noise, the auto associative
neural network has been applied for noise filtering of the data from the parameters used to calculate the efficiency. In summary, the
results show that artificial neural network can be used for compressor map prediction, but it should be emphasized that the selection of
data normalisation scale is crucial for the model where compressor mass flow is predicted. Furthermore, it is shown that the AANN
(auto associative neural network) can be used to the reduce noise in measured data and thereby enhance the quality of the data.
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Nomenclature accurate models of the gas turbine components. The

compressor is a critical part of the overall model and

cp Heat capacity
m Mass flow rate detailed models that incorporate the compressor
Dif Measurement pane at compressor exit (diffuser) characteristics are therefore required. In the simplest
5;11 g/leasurement plane at compressor inlet form, the compressor characteristics can be
Ower . . . . .

R Rotor/gas constant implemented in a table form but this is not well suited
S Stator for engine simulation since the standard interpolation
T Temperature (K) routines is not continuously differentiable. The
vV Volume flow ..

compressor characteristics are expressed by the
p Pressure . . .k
K Tsentropic exponent relationship between the pressure ratio 7', corrected
p Density N .
p Total speed n./ | T}, corrected mass flow rate m,_|T;/p, and
ANN Artificial n?ufal network efficiency ", where the interrelationships between the
AANN  Auto associative neural network . ¢
GRN General regression networks variables normally are referred to the compressor map
MLP Multi layer perceptrons which can be derived from the Buckingham theorem.

Neural networks i
b

NN The pressure ratio, corrected speed and corrected mass
RBF Radial basis function

1. Introduction

Simulation of gas turbines is important for design
and test of gas turbine control strategies and requires
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flow are parameters that can be physically measured
while the efficiencies are so-called independent
parameters which are calculated values using measured
parameters. There are several different methods to
approximate the compressor characteristics, or the
compressor map, one is e.g. a two-dimensional linear

interpolation as shown in Ref. [1]. In Ref. [2], a
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generalized procedure for analytical compressor map
prediction is outlined and later applied and presented in
Ref. [3]. In Ref. [4], auxiliary coordinates was
introduced which were superimposed on the

characteristic curves to obtain the compressor

characteristics. In Ref. [5], the authors applied

analytical functions to nonlinear models to
approximate the compressor map of different designs.
Another approach was taken in Refs. [6, 7] applying
genetic algorithms in performance model calculations
and analytical functions for compressor map
generation. Several studies such as Refs. [1, 8-11] have
evaluated different neural networks for compressor
map generation. In Ref. [11], the authors showed that
the MLP (multi layer perceptron) when compared to
RBFs (radial basis function networks), GRNs (general
regression networks) and rotated general regression
network is the most suitable neural network model to
implement due to the high interpolation capability, but
rather complicated networks were used with two
hidden layers with 10 neurons in each layer,
corresponding to a rather complex network structure.
Application of neural network models is in addition
evaluated in Ref. [8], where good results are obtained
for compressor pressure ratio prediction while the
ANN (artificial neural network) fails to predict the
compressor mass flow, instead an analytical approach
was adopted for mass flow prediction. Even though
several studies report the application of ANN for
compressor performance modelling, the existing
literature does not provide an answer of how to develop
and configure these models in an optimal manner as
well as quantifying the number of required data points
from the compressor map.

The AANN (auto associative neural network) was
originally proposed by Kramer [12] to deal with data
filtering and sensor validation through nonlinear
principal component analysis. Basically, this ANN
model replicates the input at the output, under the
constraint of a reduced dimension inside the model. By

the virtue of the reduced dimension, the network is

forced to compress the data into a lower dimension and
thereby account for interrelationships between the
parameters and discard the noise which should be
uncorrelated between the parameters. Applications of
AANN for noise-filtering from nonlinear correlated
parameters can be found in e.g. Ref. [13], where it was
used to improve the failure diagnostic capability of the
gas path analysis method.

In this study, ANNs will be used as a curve fitting
method to approximate the compressor map. Three
different compressor map models will be considered
where the first predicts the pressure ratio, the second
predicts the mass flow while the third model predicts
the mechanical efficiency. These models are developed
by applying measured data from an axial compressor
research test rig. It will be shown that the ANN models
can be developed by rather few data points from the
compressor map and that interpolation results are
excellent. In addition, it will be seen that extrapolation
outside the training domain can be performed, but at
reduced accuracy. Furthermore, it will be shown that
the model for mass flow prediction requires an
unconventional data normalisation which is due to
almost vertical speed lines in this model. Noise
reduction capability by the AANN will be investigated
on the data used for mechanical efficiency calculation,
and the results show that the calculated efficiency
becomes less scattered when the data has been
processed through an AANN. The result in this study is
based on a data set from one compressor, but the
modelling results can be considered as generic and be
useful for curve fitting of data from other compressors

with similar characteristics.

2. The Compressor Test Rig

The two stage axial flow compressor of the Institute
of Jet Propulsion and Turbo Machinery of the
University of Aachen is specially designed for the
investigation of the effects of axial spacing on
performance and compressor flow field [14]. Beside
the complex design of the rig, giving the opportunity to
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vary the axial spacing, a second major task is to equip
the rig with measurement technique that is capable to
resolve the minimal differences of the flow field caused
by the variation of the axial gap. Hence, the
measurement equipment used must have high
measurement accuracy. A schematic illustration of the
test rig is shown in Fig. 1. For calculating the
performance data of the test rig, total temperature, total
pressure and mass flow measurements are used mainly.
For that purpose, the inlet and exit of the compressor is
equipped with an extensive measurement plane
of total

keal-probe-rakes. These keal-probes have a wide scale

consisted pressure and temperature
of incidence angle of +25°. In the inlet of the
compressor (plane Inl in Fig. 1), there are four
probe-rakes located around the circumference having a
circumferential distance of 90° between each other.
Each rake has three total pressure and one total
temperature measurement position on different channel
heights. The radial position of all measurement
positions is determined by a method of centroidal axis
and result in a higher density of measurement locations
at the hub and tip. In total, the four rakes allocate 12
total pressure and four total temperature measurement
positions around the circumference in the inlet of the

compressor rig. The exit measurement plane (Dif) is

located 275 mm behind stator 2 (referring to nominal
inlet
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axial gap) and consists of five rakes equally distributed
circumferentially. These keal-probe rakes are designed
a little bit different from the ones located in the inlet.
For increasing the density of measurement positions,
each rake is manufactured as a twin rake. One rake
consists of five total pressure and five total temperature
measurement positions spread radially. In total, the exit
plane is equipped by a matrix of 5 x 5 (= 25) total
pressure and total temperature measurement positions.
the
temperature values are arithmetically averaged but also

For performance evaluation, pressure and
logged as single values.

The mass flow rate of the compressor is calculated
from a calibrated venturi nozzle and a density
determination. Density is calculated by two combined
total pressure and total temperature probes and static
wall pressure upstream of the nozzle. The venturi
nozzle is used for deriving the volume flow by
measuring the differential pressure. For increasing of
the accuracy, the static pressure of the venture nozzle is
measured at four positions around the annulus, which
are physically averaged by a triple T-arrangement. The
differential pressure is measured twice, by a more
accurate mensor and by a psi module for reference. In
order to calculate the mechanical efficiency friction
losses

in the bearings are determined by the

temperature difference of the oil inflow and outflow.
exit
Dif-1

S2

bearing

Fig. 1 Cross-sectional view of the axial compressor including the measurement planes.
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The temperatures are measured with Pt100. The drive
power of the electric motor is measured by a torque
meter. The thermal efficiency is calculated by the total
temperature and total pressure measurements of the
inlet and exit planes. The compressor is operated in a
closed loop. At design speed, it delivers a mass flow
rate of 7.7 kg/s and a pressure ratio of 1.67. During
operation, the inlet pressure and temperature as well as
the mechanical speed are remained constant. A more
detailed description of the whole test facility is given
by Ernst, et al. [15].

3. Measurement Accuracy and Data Set

As described earlier in this paper, performance data
of the compressor are used to train neural networks.
For that purpose, performance data, mainly total
pressure ratio and mechanical efficiency are derived
from keal-probe-rakes in the inlet and exit of the
compressor. Table 1 summarizes the measurement
accuracy of measurement locations, which are
important in the study. The uncertainty in the
calculation of the efficiency based on the measured
data is described by:

Af= (;—iAxl)z (j—:sz)2+...+(§—iAxn)2 (1)
where s the function such as in Eq. (2). Ax is the mean
error of the mean value. Thus using f, a confidence
interval can be calculated, in which the true efficiencies
are located. Eq. (1) assumes independently and
identically distributed zero-mean Gaussian random
variables x. The measurement accuracies are given for
the design point of the compressor. The higher
accuracy of the temperature measurement in the exit of
the compressor is due to the higher temperatures in this
region of the engine. Eq. (2) shows how the mechanical
efficiency is calculated. In contrast to the absolute
measurement accuracy, the relative measurement
accuracy does not consider systematic errors. This
consideration is allowed if two different axial spacing
are compared to each other

using the same

measurement equipment.

Table 1 Measurement accuracies of different

measurement chains.

Accuracy Accuracy

Measurement position (absolute) (relative)

(%) (%)
1 Pressure rakes (inlet and exit) 0.05 0.05
2 Temperature rakes (inlet) 0.42 0.22
3 Temperature rakes (exit) 0.18 0.08
4 Total pressure ratio 0.02 0.02
5 Mass flow rate 0.37 0.02
6 Differential pressure venturi nozzle 0.01 0.01
7 Thermal efficiency 0.78 0.18

k-1
cp‘Tinl'VAir'<(ziLnilf) - 1>

)

Especially the efficiencies and determination of

Mimech ™ R'T'(P - Von'ATon'CpOH'Pou)
mass flow rate are affected by the systematic errors.
For the training of the neural networks, a large data set
is recorded in the whole area of the compressor map. In
total, data are taken on six different speed lines (60%,
70%, 83%, 90%, 95% and 97%) throttling the
compressor from choke until it surged. Therefore, the
surge line is the last stable point before real surge
occurred. On each speed line, the compressor is
stabilized at approximately 50 discrete points and

performance measurements are carried out.
4. MLPs (Multi-Layer Perceptrons)

Feed forward multi-layer perceptrons are universal
nonlinear function approximators which imply that
they are able to approximate general mappings from
one finite dimensional space to another. The
mathematical expression of a one hidden layer neural
network becomes:

2 1 ! 2
Yk(X):G (Z}\ﬁo Wj(i )h( P:l Wj(i )Xi+wj(0)) +W1(<0)) 3)

where D is number of inputs, M is number of neurons or
basis functions and w is the different matrices and
vectors containing the coefficients that are adjusted
during training. Most importantly, MLPs perform
function approximation in a very attractive and precise
manner by using simple basis functions, normally

represented by the tangent hyperbolic or the sigmoid
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function, see 4 and ¢ in Eq. (3), where the numbers of
basis functions are fixed for a given model configuration
but the shape of the basis functions are adaptive during
the training phase. The result is that a compact model
with few adaptive parameters can be obtained for rather
complicated mappings compared to other methods such
as polynomials or RBFs where the shape of the basis
functions are fixed. However, in contrast to polynomials
and RBF, there is no closed form solution for calculation
of the optimal weight values and instead an iterative
optimisation algorithm is required which does not
theoretically guarantee convergence. Because of this,
several networks of the same configuration is normally
trained with slightly different initial weight values.
Configuration of a model for a specific set of data is
reduced to deciding the number of basis functions in the
model, performed by selection of number of neurons in
the so-called hidden layer; see M in Eq. (3). Higher
number of basis functions or hidden neurons increases
the functional complexity that the network can
approximate but also imply that more data are required
to ensure generalisation. There is no theory available for
a priori decision of the correct number of neurons. In
practice, this is a trial and error problem where the goal
is to have an accurate model prediction using as few
neurons as possible.

A second application of MLPs, apart from function
approximation, is nonlinear principal component
analysis through a three hidden layer configuration
including a so-called bottleneck layer with a reduced
dimension. This type of network is a so-called auto
associator, trained to recreate the measurement vectors
at the output layer as closely as possible, in a
least-square error sense over a set of training data
patterns. The smaller dimension in the bottleneck layer
forces the network to learn the systematic correlations
in the data, while exclude the random variations that
are due to measurement noise, which is possible since
measurement noise is uncorrelated between the
sensors. Use of MLPs as non-linear feature extraction
was introduced by Kramer [12] and exemplified in e.g.

Ref. [13].
5. Modelling Approach

The compressor map is approximated by training
MLPs to reproduce the compressor characteristics
applying the measured data. This means that the
compressor characteristics are inherently implemented
Three  different

configurations of the compressor map and one auto

without any  assumptions.

associative model for noise reduction will be

considered and named as follows:

Model-I: 7, = fn,, N,)
Model-1I: 7, =f(x,, N,.)
Model-Ill: 7, =£(n,,1m,)
Model-IV:  Dueen = Mimech)

Models I-1II are configured as regression models, i.e.
models that predict an output based on inputs, while
Model-1V is configured as an auto associative model,
i.e. a model that replicates the input at the output. Each
regression model is approximated by a one hidden
layer MLP, using the measured data as input or output
to the network. In Model-11I, the mechanical efficiency
is a predicted parameter, but since this parameter is
calculated based on six measured parameters, it
becomes affected by the systematic uncertainty in these
measured parameters. Because of this, the measured
parameters that are used to calculate the mechanical
efficiency are processed through an AANN prior to
calculation of the efficiency. The mechanical
efficiency which is calculated with the AANN
processed parameters is then used as the target
parameter in Model-III. The configurations of the
models are performed in a trial and error approach
implemented by training several networks with
different number of neurons in the hidden layers. In the
regression task, the problem is condensed into deciding
the size of number of neurons in the hidden layer, while
in the data noise cleaning AANN task there are two
variables to be decided, number of neurons on the
mapping layer, which should be of the same size and
number of neurons in the bottleneck layer. The number
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of neurons should in all cases be selected as low as
possible to ensure good generalization capabilities. The
adjustable parameters, i.e. the network weights, are a
direct function of the network weights and a thumb of
rule is that there should be at least a few data patterns
per weight value. Each model is trained using three
different data sets, the training set which is used to
numerically adjust the network weights, the CV set
(cross validation), which is used to stop training prior
to overtraining and finally a test which is used to
evaluate the trained network’s performance. During
training, the network weights are adjusted in an
iterative process where all training patterns are first
presented to the network and the MSE (mean square
error) is calculated. By applying the back propagation
algorithm, it is possible to evaluate, which weights as
well as in what direction these should be adjusted in
order to decrease the MSE. Adjustments of the network
weights can be done by several different optimization
algorithms such as the gradient descent method.
However, in this study, the Levenberg-Marquardt
algorithm [16] is used which is a modification of the
Gauss-Newton  optimisation  algorithm.  The
Levenberg-Marquardt algorithm is faster and less
prone to get stuck in local minima’s in the error space
compared to the basic gradient descent algorithm. The
learning process is repeated several steps, one step is
called one iteration. When the learning algorithm has
converged, i.e. additional iterations do not cause a
decrease in the error, the optimisation procedure is
stopped and the network weights are saved. Due to the
possibility of being trapped in a local minimum,
several training sessions are performed with different
initial weight values where the best in terms of the
lowest prediction error is used. Evaluation of the
possibility to be trapped in a local minimum can be
done by comparing the training results for the different
training sessions; big difference in terms of prediction
accuracy indicates that the model is sensitive to the
initial weight values and additional training sessions

might be motivated.

6. Modelling Results
6.1 Predicted Pressure Ratio—mn,= f(in.,N.,)

The compressor map, according to Model-I, is
trained with 206 data patterns from all speed lines. Of
these 206 data patterns, 60% is used in the training set,
20% in cross validation set and the remaining 20% in
the test set. The data is linearly rescaled between +£0.8
prior to network training to allow for extrapolation of
the data. The number of neurons represents in some
sense the complexity between input and output
parameters, and in this model it can be recognized in
Fig. 2 that three neurons are enough to approximate the
functional complexity between the input and output
parameters. Three neurons in the hidden layer imply
that 13 weights are used in the network configuration,
which gives a data pattern per weight ratio of 9.5, only
counting the data patterns in the training data set, which
should be enough to avoid any over-fitting in the
network. The training phase requires a few hundred
iterations to converge, see Fig. 3 for the model with
three hidden neurons.

To evaluate the interpolation capability, the network
with three neurons in the hidden layer is retrained
where one speed line between 97% and 60% is
removed from the training data set at the time. The
networks are then tested with the speed lines not used
during training which is termed interpolation since this
unseen speed lines during training is located inside the
training data boundary. Fig. 4 shows the graphical
result for speed line 95%, and in Table 2 a comparison
between the interpolation error and training error for
the four speed lines located between the lowest speed,
60%, and the highest, 97%, is shown. Table 2 shows
that the interpolation capability is excellent, since the
difference in error is almost indistinguishable between
the cases where the speed line data are used during
training and in the case where it is not seen at all. To
investigate the extrapolation capability, a neural
network with three hidden neurons was trained with all
speed-lines except 60% and 97%, respectively. The



Compressor Map Prediction by Neural Networks 1657

With 3 hidden neurons,
the model converge
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Number of Neurons in Hidden Layer

Fig. 2 MSE as a function of hidden neurons.
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Fig. 3 Optimisation convergence with three hidden neurons.
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Fig. 4 Interpolation results for 95% speed line.

Table 2 Training and interpolation average error for each
speed line.

Speed line  Error-interpolation (%)  Error-training (%)
60% - 0.21
70% 0.23 0.22
83% 0.25 0.24
90% 0.26 0.26
95% 0.27 0.26
97% - 0.25

average error for prediction of the 60% speed line is
0.7% and for 97% speed line 0.35%. The result is shown
in Figs. 5a and 5b and it can be concluded that the

extrapolation can be performed, however, as expected
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Fig. 5 (a) Extrapolation results for 97% speed line; (b)
extrapolation results for 60% speed line.

at reduced accuracy compared to interpolation. At least,
the network seems to maintain the general behaviour of
the shape of the speed line during extrapolation. The
higher error for the 60% speed line can be explained by
the fact that the network has to extrapolate a longer
distance. This means that extrapolation should be, in
the case it is necessary, applied to data close to the
training data domain.

The previous models were trained with the existing
data set, where each speed line is represented by
several measurements close to each other. The question
may arise how many data patterns actually are needed
to model the compressor characteristics for pressure
ratio prediction. This is dependent on several factors
such as number of neurons in the model, number of
input parameters as well as the shape of the function; a
highly nonlinear function requires a higher number of
data patterns than a simpler one. For that purpose, two
test cases are investigated with the goal to quantify the
minimum number of training data. In Case-1, three

training data patterns and two cross validation patterns
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evenly distributed along the speed line are used, while
in Case-2, four data patterns and three cross validation
patterns are used. The ANN models are constructed
with three neurons in the hidden layer which was
previously seen as enough for the given functional
complexity between the input and output parameters.
In Case-1, the data pattern per weight ratio is 1.7 while
in Case-2, it is 2.3. The remaining data are used as test
data to verify the generalisation performance. In
Case-1, the average error in the test data is 0.46% and
the result is shown in Figs. 6a and 6b.

The average error is higher than in the previous
model where 206 data patterns were used in the
training and it can be concluded that training data
points are not enough to fully capture the compressor
characteristic. However, in Case-2, see Figs. 7a and 7b,
the average error in the test set is reduced to 0.25%,
similar to when the 206 data patterns were used and it
can be concluded that in this case the number of
training data is enough to approximate the compressor
characteristics.

6.2 Predicted Mass Flow—m,= f(x.,N,.)

The compressor mass flow is predicted based on the
normalized speed and the pressure ratio. The part of the
speed lines that are almost horizontal in Model-I
become almost vertical in Model-I which imply that
this model is much more sensitive to small differences

in pressure ratio than Model-I in compressor mass flow.

A first attempt was made applying the same data
normalisation scale as in Model-I, i.e. +£0.8. As
indicated in previous studies [11], MLPs can not
approximate the model except by drastically increasing
the number of neurons. To exemplify this, Fig. 8 shows
the network compressor characteristic approximated
with four hidden neurons. The network fails to
especially approximate the steep part of the speed lines
and the error in the test data, applying a normalisation
scale of 0.8, is 1.1%.

This problem is related to the S-shaped transfer
function in the neurons, the so-called basis functions.
During training, the network weights are updated
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Fig. 6 (a) Case-1, training and cross validation data; (b)
Case-1, test data.
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Fig. 7 (a) Case-2, training and cross validation data; (b)
Case-2, test data.

which changes the actual shape of each basis function
where each basis function is used to approximate a part
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of the overall function, further discussion on this
subject can be found in e.g. Ref. [17]. The main point is
that different basis functions are used to obtain
different parts of the approximated function, where one
or several basis functions are used to obtain nonlinear

approximations and others for the linear approximation.

Because of this, it can be assumed that the optimal data
normalisation scale partly depends on the function to
be approximated. By applying a lower data
normalisation scale, it will be easier for the ANN
model to approximate the steep part of the
approximated function, however, selection of a too low
normalisation scale implies that the network will have
difficulties to approximate the nonlinear part of the
function. As recognized in Fig. 8, the function
approximated in Model-II contains both a very steep
part as well as a nonlinear part. It can be noted here that
the difficulties for ANNs to approximate this type of
functions have been reported in Ref. [8] where the
authors applied ANN for compressor flow rate
prediction as a function of pressure ratio and rotational
speed of turbochargers.

The successful data normalisation scale was found to
be at +0.4, see Fig. 9 for the curve fitting result, where
the average error in the test data set was 0.35%.
Applying a lower data normalisation than £0.4 made
the approximation of the nonlinear part difficult. The
interpolation results are similar to the results obtained
with Model-1. In contrary to the results obtained with
Model-I, extrapolation was shown to yield totally
10 for

extrapolation of the 60% speed line. In summary,

useless predictions as shown in Fig.
Model-II should specifically only be applied inside the

training data domain.
6.3 Predicted Efficiency—n,, , , = f(n.,1.)

The estimated mechanical efficiency is calculated
based on six different measured parameters, see Eq.
(2), and because this is affected by noise in the
measurements. Estimation of efficiency can be
improved if the noise content in the measured

parameters used to calculate the efficiency is reduced.
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In this study, this is achieved by constructing one
AANN network for each speed line and then use the
AANN predicted values to recalculate the mechanical
efficiency. The AANN networks are configured with a
reduced dimension in the bottleneck layer which
learn the systematic

forces the network to

interrelationship between the parameters while
exclude uncorrelated information such as noise. The
actual AANNSs are configured with six neurons in the
mapping layer and four neurons in the bottleneck layer,
using a data set containing 1,020 data patterns. With

this configuration, the network includes 155 weights
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to be determined, in this case with a data pattern per
weight ratio of 6.6. In Fig. 11, a schematic illustration
of the data filtering process is shown, while Figs. 12a
and 12b illustrate the noise reduction effect by the
efficiency calculated with raw data and the efficiency
calculated with the AANN filtered data. The
efficiency calculated with raw data is rather scattered,
while the efficiency calculated with AANN filtered
data seems to be less scattered which indicates that
noise filtering has been performed on the data when
processed through the AANN model. It can also be
noticed that the highest noise filtering effect is seen in
the area where many measurement data points are
located which shows how the AANN noise filtering
capability depends on redundancy in the data. Fig. 12b

A —» Recalculate nyec
Poit filtered ‘

P parameter
\j, Values

Original measured
parameter values P

P =T Vi P Prs Vo )

Fig. 11 Schematic illustration of the data noise filtering
process.
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Fig. 12 (a)

shows the result for all speed lines and Fig. 12a shows
for speed line 97%. For all speed-lines, it can be
clearly seen that the AANN processed data reduce the
noise content. Because of this, the mechanical
efficiency is calculated based on the filtered data prior
to training of Model-II1.

The AANN filtered data are used as the new
training data for Model-1lI, where the final model
needed four neurons in the hidden layer. The ANN
model is trained in the same manner as the previous
models, applying a linear data normalisation scale of
+0.8, similar as in Model-1. The average error for the
mechanical efficiency is 0.55%. Fig. 13 shows the
error as a function of number of neurons in the hidden
layer and it can be recognized that three or four
neurons is enough to approximate the input/output
relationship. In Fig. 14, the prediction of mechanical
efficiency by the ANN is shown together with the raw
measurements. Interpolation and extrapolation was
tested in Model-I with similar results, that meant

interpolation was performed with similar accuracy as
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Fig. 13 Mean square error as a function of neuron.
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Fig. 14 Network prediction and measured mechanical

efficiency.
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in training data, while extrapolation could be
performed at slightly increased error, in the case
where data from 97% speed line was used for
extrapolation. The error was similar to the training
error while extrapolation of the 60% speed line results
in an average error of 1.2%, approximately twice the

training data error.
7. Conclusions

In this study, ANN models were used as curve fitting
tools applied to measured data from an axial
compressor test rig. Two specific objectives have been
investigated, the first one targeting the optimal design
ANN  model

development with

parameters for configuration and

respect to interpolation and
extrapolation capabilities while the second objective
was to evaluate the AANN for data screening and noise
filtering purposes. For the curve fitting purpose, three
different models were evaluated, prediction of pressure
ratio, mass flow and mechanical efficiency. It was seen
that for each model the compressor map could be
approximated by a one hidden layer MLP with 3-4
neurons in the hidden layer, depending on the predicted
parameter. All models revealed excellent interpolation
capabilities and are in accordance to previous studies
such as Ref. [8]. The compressor mass flow curve
fitting model was the most challenging task since this
required an unconventional data normalisation scale to
provide acceptable data representation. Extrapolation
was seen to be possible with acceptable results with
Model-I and Model-III while Model-II revealed to
provide unacceptable extrapolation prediction results.
In summary, for compressor data curve fitting, Model-I
and Model-III can be used for interpolation and to some
extent extrapolation while Model-II should be restricted
to interpolation, i.e. only be applied inside the training
data domain. Comparing the results to similar studies, it
was seen that simpler networks could be used than in
Ref. [11], and the issue of mass flow prediction as
reported in Ref. [8] is solved by applying lower data
normalisation scale than normally used. The AANN

was applied as a pre-processing step to filter noise in the

measured data used for mechanical efficiency

calculation and a clear noise reduction was seen when
the efficiency was calculated by the filtered data instead
of the original measured data values. Thus, the AANN
methodology can be used as a data cleaning tool, either
to reduce the noise content in the data or to be used to
select representative data points. In summary, the
results in this study show that ANN can be used to
develop efficient differentiable numerical models of the
compressor characteristics when the data covering the
main part of the operating window is available. In
addition, some results regarding required number of
data patterns as well as the needed number of neurons in
the hidden layer for the different models are provided
which can be useful for ANN modelling of compressors

with similar characteristics.
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