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Abstract: Accurate assessment of herbage mass (HM) in pasture is a key to budgeting forage in grazing systems worldwide. 
Different non-destructive techniques to measuring pasture yield are commented. The methods compared include visual estimations, 
manual and electronic pasture meters and remote sensing. All methods are associated with a moderate to high error, showing that 
some indirect methods of yield estimation are appropriate under certain conditions. In general terms, no method was found as the 
most appropriate because many factors as climate variations, soil characteristics, plant phenology, pasture management and species 
composition must be taken into account to make local calibrations from a general model. Best results were found modifying general 
methods under local calibrations and under local conditions. In order to give farmers the best method to manage adequately their own 
grazing systems, researchers must select the most suitable technique considering the scale of operation, the desired accuracy and the 
resources available. 
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1. Introduction  

Vegetation is measured for a wide range of 
purposes, such as: description in terms of botanical 
composition, ground cover, amount of dry matter 
(DM), quality of DM, biological alters in relation to 
climate changes, and for determining its capacity to 
provide feed for livestock [1-4]. During the past 70 
years, many indirect non-destructive methods for 
quickly estimation of herbage mass (HM) have been 
proposed and evaluated [5, 6]. Traditionally, estimates 
from manually or mechanically clipped quadrants 
have been used to estimate HM. Many authors agree 
that clipping provide accurate measures of biomass, 
however, it is expensive, time intensive and may 
require numerous samples to obtain reliable pasture 
estimates [7]. Furthermore, the time and labour 
required constrain the number of samples that can be 
collected realistically. Alternative to clipping, 
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sampling procedure methods that use double sampling 
techniques are commonly used by researchers to 
increase the precision of estimations and minimise the 
amount of work [8]. These methods function by 
developing a regression relationship of standing crop 
to predictive values, such as plant height, leaf area, 
vegetation density, canopy, age, cover, visual 
obstruction [9] or remote sensing data [10]. However, 
such estimations usually are associated with a 
moderate to high experimental error, because 
relationships between production and pasture 
variables depend on numerous factors that can interact 
mutually. The accuracy of estimations can be affected 
by many factors, such as the density and growth state 
of plants [11, 12], the season [13-16], species 
composition of the meadow [17] and grassland 
management [14]. Traditional methods as visual 
estimation [18] are considered satisfactory for general 
grassland inventories, but, as reported by Tucker [19], 
it suffers from variations among observers and is not a 
quantitative method. A variety of methods that use 
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more sophisticated instruments have been developed 
during the past 50 years, some of them have been 
adapted for its commercial use. This paper considers 
the application of different techniques that may be 
useful in measuring forage production or standing 
crop using non-destructive methods. 

2. In Situ Measurement Instruments 

2.1 Manual Instruments 

The simplest instruments are the pasture ruler and 
the plate disc. Pasture ruler relies on a positive 
relationship between forage yield and uncompressed 
canopy height. A widely used implement in Europe is 
the sward stick [20], which measures plant height 
rather than compressed sward height. It employs a 2 × 
1 cm clear window that is lowered vertically on a shaft 
until its base touches the vegetation. The height contact 
above the ground is recorded in 0.5 cm bands. 
However, canopy height can be difficult to measure 
due to the subjectivity associated with which plant or 
plan parts should be considered to form a mean height 
measure [21], so researchers have been added several 
types of discs or plates to the rule to incorporate an 
area dimension to the measurement. Plate discs consist 
in grass meters with a light, horizontal plate (called 
“weighted disc”, “rising plate”, “drop-disc” or “pasture 
disc” in bibliography) of about 0.3 × 0.3 m that can 
slide up or down a central, vertical and graduated stem 
[22]. Several authors suggested modifications from this 
design as the substitution of the metal plate by other 
materials such an acrylic and transparent plastic with 
some markers or holes [23]. These holes allow the use 
of the plate as a squared paper for estimating ground 
cover of for measuring the occurrence of forage 
species under the sampling area. 

A method called visual obstruction was proposed in 
1970 by Robel et al. [24, 25]. A striped pole often 
called the Robel pole measures the lowest point of the 
pole not visually obstructed by vegetation when placed 
vertically in a sward. Numerous transects are walked 
and the observer stops at intervals, sets the pole 

vertically in the vegetation, steps back 4 m from the 
pole, and reads the last visible number toward the lower 
end of the pole at three heights (0.5, 0.8 and 1.0 m). 
Such observations are made at the four cardinal 
directions around the pole. Michalk and Herbert [26] 
compared this method with hand-clipping and ground 
cover measures, and obtained a good correlation 
between height and HM, with an r2 of 0.81. Harmoney 
et al. [27] found this technique the most suitable in 
comparison with rising plate meter, LAI analyser and 
canopy height stick, with an r2 = 0.63. Similar 
conclusion were found by Ganguli et al. [28] in the 
same comparison, with an r2 = 0.87. Ackerman et al. 
[29] obtained a lower value (r2 = 0.59) in a two-year 
trial, and concluded that this technique has potential for 
practical use. Ackerman et al. [29] found an r2 value of 
0.88, and Vermeire and Gillen [9] found an r2 = 0.90. 
As can be seen, all papers reviewed consider visual 
obstruction technique as a good method for 
non-destructively estimating. However, there are some 
considerations about the use of this technique: as shown 
by Heady [21], some factors difficult exact measures of 
pasture height: the highest point may be difficult to 
identify when plants are lodging or dropping, when the 
point is the tip of an structure, and when several parts 
are nearly the same height. The second consideration is 
that not many references exist in the literature, and as 
reported by Benkobi et al. [30] and Ganguli et al. [28] 
investigations on the performance of this method in 
different vegetation types are limited. 

2.2 Electronic Instruments 

More complex electronic instruments as the 
electronic capacitance meter, first reported by 
Fletcher and Robinson [31] and sonic sward stick [32] 
have been developed to improve speed and precision 
of sampling. The sonic sward stick calculates sward 
height from the flight time of an ultrasonic pulse 
bounced off the sward surface. Electronic capacitance 
meter uses a single rod probe and an electronic system 
that accumulates the readings from a number of 
sampling sites within a pasture plot [33, 34]. The 
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reading-system relies on differences in dielectric 
constants between air and herbage and it measures the 
capacitance of the air-herbage mixture, responding 
mainly to the surface area of the foliage [8]. A variety 
of capacitance meters have been built under this 
principle and incorporating various modifications 
[35-45]. However, and as reported by Murphy et al. 
[45], readings are affected by water in vegetation, 
including litter, and is not an accurate method during 
or immediately following rainfall. Commercial 
instruments often come with standard equations, and 
the precision of this instrument depends on the 
adjustment on these calibration equations. Many 
studies have shown that the use of indirect methods to 
obtain a measure of HM, using this standardised 
equations are not representative in different conditions 
and situations, because of variations in pastures, 
management and climate [22]. Dowdeswell [46] 
reported a poor relationship between yields estimated 
with a rising plate meter using New Zealand equations 
and measured yield. Sanderson et al. [8] obtained low 
correlation coefficients with pasture ruler, rising plate 
meter and capacitance meter on cool season 
grass-legume pastures in three dairy farms of north 
east USA (Pennsylvania, Maryland and Virginia); the 
three trials used commercial calibrations made in New 
Zealand. These authors suggested that an error level 
upper from 10% could be statistically acceptable, but 
economically inaccurate. Given the inherent spatial 
and temporal variability of pastures, it may be difficult 
for a producer to achieve an error lower than proposed 
10%, however, some authors found that local 
calibrations can reduce error to about 10% [23]. 

Many experiments which pre- and post-grazing 
estimations were compared showed that post-grazing 
measures where poorly correlated with estimations, 
especially when the residue is very short, due to soil 
surface roughness combined with the weight of 
rising-plate, which was too heavy to be supported by 
the short stubble [45]. An added problem to 
post-grazing estimations is the effect of trampled HM, 

which can affect the calibrations of instruments. 
Stockdale and Kelly [47] suggested that the aspect of 
trampling is the major factor that may preclude the 
rising plate meter from general use in dairy cattle 
research. If the herbage is evenly trampled, there 
would not be a problem with either meter; however, 
dairy cows trample a sward unevenly. Stockdale and 
Kelly [47] concluded that cutting quadrants was the 
best way to estimate post-grazing HM when it is 
unevenly trampled. A possible solution to this 
problem is to estimate the proportion of the sward that 
is trampled and apply different regressions to each 
proportion. In the other hand, as plant density 
increases in local areas, the number of stems in a 
given area increases, this higher density may result in 
a sward which would provide more local resistance to 
an object which is allowed to settle onto it. 

Experimental error due to the sampling method also 
constitutes an important source of variation. In this 
way, the sensibility of an instrument varies with the 
spatial work scale, the sampling area and the modus 
operandi [48]. Aiken and Bransby [49] observed 
significant differences in measurements of the same 
grass bulk measured by four different observers, as in 
the selection of the representative sampling area too, 
showing that the observer constitutes itself another 
source of variation. Variability between observers 
were also reported by Earle and McGowan [50], who 
suggested that significant differences between 
observers recommend that meter readings on 
calibration and in pasture measurements should be 
taken by the same operator. 

2.3 Accuracy of Calibration Equations 

According with Rayburn [51] the logical model for 
rotationally grazed pastures, grazed to a short residual 
height, is a linear equation that passes through the 
origin. Under continuously grazed pastures where a 
thatch build-up occurs, a regression model using a Y 
intercept is most appropriate. In Table 1 is given a 
comparison between regression models obtained from 
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Table 1  Best regression models found in bibliography for herbage mass estimation in most used measurement techniques. 
Meters are grouped in six categories by type of technique used. 

Meter Model R2 Period Source Units 
Canopy analyzer Y = 147 + 847.26 X 0.32 Annual Harmoney et al., 1997 kg/ha - units 

Y = 369.3 + 2517.4 X 0.67 Summer Ganguli et al., 2000 kg/ha - units 
Capacitance meter Y = 1289 + 28 X 0.89 Annual Gonzalez et al., 1990 kg/ha - units 

Y = 330 + 0.617 X 0.25 Annual O'Sullivan, 2002 kg/ha - cm 
Y = 901 + 0.3 4 X 0.14 Annual Sanderson et al., 2001 kg/ha - units 
ln (Y) = 0.718 + 0.763 X 0.72 Annual Terry et al., 1981 g/0.186 m2 - units
ln (Y) = 14.62 + 0.54 X 0.59 Annual Terry et al., 1981 g/0.186 m2 - units
Y = 5410.8 - 5512.4 e -006X 0.86 Annual Vickery et al., 1980 kg/ha - units 
Y = 9.9 X + 600 0.86 Spring L’Huillier, 1988 kg/ha - cm 
Y = 1209 + 14 X 0.84 Spring Michell and Large, 1983 kg/ha - units 
Y = -313.6 + 0.9 X (pregrazing) 0.42 Spring Murphy et al., 1995 kg/ha - cm 
Y = -369.1 + 0.89 X (postgrazing) 0.13 Spring Murphy et al., 1995 kg/ha - cm 
ln (Y) = 0.16 + 0.918 ln (X) 0.82 Spring Terry et al., 1981 g/0.186 m2 - units
Y = 1,200 + 9.5 X 0.86 Spring-summer L’Huillier, 1988 kg/ha - cm 
Y = 1,240 + 13.8 X 0.86 Summer L’Huillier, 1988 kg/ha - cm 
Y = 1,314 + 20.3 X 0.83 Summer Michell and Large, 1983 kg/ha - units 
ln (Y) = 0.126 + 0.837 ln (X) 0.67 Summer Terry et al., 1981 g/0.186 m2 - units
Y = 1020 + 12.7 X 0.86 Summer-autumn L’Huillier, 1988 kg/ha - cm 
Y = 990 + 10.4 X 0.86 Autumn L’Huillier, 1988 kg/ha - cm 
ln (Y) = 0.363 + 0.911 ln (X) 0.82 Winter Terry et al., 1981 g/0.186 m2 - units

Pasture ruler Y = 37 + 21.7 X 0.86 Annual Gonzalez et al., 1990 kg/ha - mm 
Y = 876 + 0.29 X 0.11 Annual Sanderson et al., 2001 kg/ha - cm 
Y = -31.85 + 0.073 X 0.72 Spring Carton et al., 1989 kg/ha - mm 
Y = 590 + 120 X 0.81 Spring L’Huillier, 1988 kg/ha - cm 
Y = 1,340 + 70 X 0.81 Spring-summer L’Huillier, 1988 kg/ha - cm 
Y = 1,340 + 172 X 0.81 Summer L’Huillier, 1988 kg/ha - cm 
Y = 810 + 195 X 0.81 Summer-autumn L’Huillier, 1988 kg/ha - cm 
Y = 400 + 300 X 0.81 Autumn L’Huillier, 1988 kg/ha - cm 

Plate meter Y = 762 + 155 X 0.97 Annual Earle and McGowan, 1979 kg/ha - cm 
Y = 282 + 29.3 X 0.91 Annual Gonzalez et al., 1990 kg/ha - mm 
Y = 68.11 + 202.9 X 0.59 Annual Harmoney et al., 1997 kg/ha - cm 
Y = 36 + 149 X 0.78 Annual Hoden et al., 1991 kg/ha - cm 
Y = -507 + 31 X 0.51 Annual Mayne et al., 1988 kg/ha - cm 
Y = -1,061 + 35 X 0.48 Annual Mayne et al., 1988 kg/ha - cm 
Y = 278 + 0.48 X 0.31 Annual Sanderson et al., 2001 kg/ha - cm 
Y = -36.34 + 140.63 X 0.76 Annual Mosquera et al., 1991 kg/ha - cm 
Y = 10.26 + 128.18 +0.6 X2 0.76 Annual Mosquera et al., 1991 kg/ha - cm 
Y = 362 + 225 X 0.71 Annual O’Sullivan, 2002 kg/ha - cm 
Y = 3 + 452 X 0.52 Annual Rayburn and Rayburn, 1998 kg/ha - cm 
Y = 88.01 + 13.8 X 0.76 Spring Bransby et al., 1977 kg/ha - cm 
Y = 640 + 125 X 0.84 Spring L’Huillier, 1988 kg/ha - cm 
Y = 371 + 18 X 0.52 Spring Mayne et al., 1988 kg/ha - cm 
Y = 4.3 + 6.24 X 0.67 Spring Michalk and Herbert, 1977 g/m2 - cm 
Y = 1,011 + 271 X 0.96 Spring Michell and Large, 1983 kg/ha - cm 
Y = 8.75 + 140.46 X 0.74 Spring Mosquera et al., 1991 kg/ha - cm 
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     (to be continued) 
Meter Model R2 Period Source Units 
Plate meter Y = 16.62 + 134.32 X  + 0.27 X2 0.74 Spring Mosquera et al., 1991 kg/ha - cm 

Y = 392.9 + 317.8 X (pregrazing) 0.52 Spring Murphy et al., 1995 kg/ha - cm 
Y = 1,237.6 + 53.4 X (postgrazing) 0.00 Spring Murphy et al., 1995 kg/ha - cm 
Y = -4.1 + 1.01 X 0.94 Spring-summer Griggs and Stringer, 1988 g/m2 - mm 
Y = 990 + 130 X 0.84 Spring-summer L’Huillier, 1988 kg/ha - cm 
Y = 14 + 22 X 0.72 Sprng Mayne et al., 1988 kg/ha - cm 
Y = -188 + 154 X 0.77 Summer Bransby et al., 1977 kg/ha - cm 
Y = -515.44 + 328.39 X 0.83 Summer Ganguli et al., 2000 kg/ha - cm 
Y = 1,480 + 165 X 0.84 Summer L’Huillier, 1988 kg/ha - cm 
Y = 3,102 + 61 X 0.79 Summer Mayne et al., 1988 kg/ha - cm 
Y = -175 + 47 X 0.53 Summer Mayne et al., 1988 kg/ha - cm 
Y = 925 + 385 X 0.90 Summer Michell and Large, 1983 kg/ha - cm 
Y = 1,180 + 159 X 0.84 Summer-autumn L’Huillier, 1988 kg/ha - cm 
Y = -942  +33 X 0.62 Summer-autumn Mayne et al., 1988 kg/ha - cm 
Y = -844 + 32 X 0.39 Summer-autumn Mayne et al., 1988 kg/ha - cm 
ln (Y) = 5.65 + 0.52 X - 0.02 X2 0.81 Summer-autumn O'Sullivan et al., 1987 kg/ha - mm 
Y = 50.4 + 385.8 X 0.76 Summer-autumn O'Sullivan et al., 1987 kg/ha - mm 
Y = -1,393 +239 X 0.62 Autumn Bransby et al., 1977 kg/ha - cm 
Y =  970 + 157 X 0.84 Autumn L’Huillier, 1988 kg/ha - cm 
Y = -143 + 209 X 0.88 Winter Bransby et al., 1977 kg/ha - cm 

Sward stick Y = -6.4 + 15.1 X 0.91 Annual Duru and Bossuet, 1992 g/m2 - cm 
Y = 62.6 + 11.9 X 0.78 Annual Duru and Bossuet, 1992 g/m2 - cm 
Y = 485.01 + 56.57 X 0.55 Annual Harmoney et al., 1997 kg/ha - cm 
Y = -22.08 + 799.93 X 0.78 Annual Mosquera et al., 1991 kg/ha - cm 
Y = 100.21 + 44.17 X +1.7 X2 0.80 Annual Mosquera et al., 1991 kg/ha - cm 
Y = -117 + 167.7 X 0.60 Annual O’Sullivan, 2002 kg/ha - cm 
Y = 48.27 + 82.58 X 0.81 Spring Mosquera et al., 1991 kg/ha - cm 
Y = 98.08 + 44.28 X + 1.69 X2 0.83 Spring Mosquera et al., 1991 kg/ha - cm 
Y = 398.1 + 71.6 X (pregrazing) 0.49 Spring Murphy et al., 1995 kg/ha - cm 
Y = 931.8 + 79.9 X (postgrazing) 0.10 Spring Murphy et al., 1995 kg/ha - cm 
Y = 7.5 + 0.78 X 0.80 Spring-summer Griggs and Stringer, 1988 g/m2 - mm 

Visual obstruction Y = 1,093.3 + 91.1X 0.63 Annual Harmoney et al., 1997 kg/ha - cm 
Y = 19 + 113 X 0.94 Annual Robel et al., 1970 g/m2 - dm 
Y = 14.05 + 4.02 X 0.66 Spring Michalk and Herbert, 1977 g/m2 - cm 
Y = -819.47 + 256.62 X 0.87 Summer Ganguli et al., 2000 kg/ha - cm 

 

several author in various types of pasture meters and 
in several pasture conditions, because some authors 
reported different responses depending on different 
growth states through the season [52, 53]. Usually the 
more used regression model is linear, however, some 
works with plate meters showed an exponential 
response in highest values of disk meter values [16, 54, 
55]. Such mathematical trend has been observed too in 
capacitance meters [33, 44, 47, 56]. Data given in 
Table 1 shows that best mean coefficient of 
determination (r2) were found in manual instruments, 

from higher value of visual obstruction technique (r2 = 
0.78), followed by plate meters (r2 = 0.74), pasture 
rulers (r2 = 0.72) and  sward sticks (r2 = 0.69). Worst 
correlations were found in electronic meters, from 
capacitance meters (r2 = 0.68), to canopy analyzer (r2 
= 0.78), but this last meter only have two data. 

Double-sampling techniques are applied to calibrate 
non-destructive devices by a regression model. The 
precision of a given estimation technique may be 
evaluated either by reference to the residual standard 
deviation (RSD) of a calibration equation, either by 
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comparing the variance of a sample estimate obtained 
non-destructively with that from clipping [57]. The 
variance of a sample estimated obtained by 
double-sampling was given by Cochran [10]: 
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where n is the number of paired observations made to 
establish the overall regression equation. Another 
similar formula was given by McIntyre [58] and 
simplified by Mitchell [59]. 

As an alternative to models that use a single 
variable, in recent years another methods appeared for 
estimating biomass that use simultaneously many 
parameters as physical, chemical and climate variables, 
quality and pasture management, etc. Recent advances 
in computers and statistical techniques can provide 
simulation models of pasture yield that can be used to 
predict grass growth [60-63]. These tools also allow 
estimating growth under simulated conditions and can 
be considered as decision support systems [64]. 

3. Remote Estimation Systems 

Modern information technologies such as remote 
sensing and geographical information systems are 
being used increasingly as tools to assist in grassland 
resource inventory, modelling and forecasting to 

support decision-making. The principle of remote 
estimation is based on the spectral radiance reflected 
by plant canopy. Radiation reflectance is affected by 
leaf area index (LAI), which is related to vegetation 
cover, which may be used as a measure of total forage 
biomass. LAI can be estimated by measuring light 
transmission within stands by a photometer. 
Numerous commercially available instruments, such 
as Decagon ceptometer or LI-COR LAI-2000 plant 
canopy analyser [65] are used to indirectly estimate 
LAI. Spectral estimations use two wavelengths 
regions: the red (0.60-0.70 μm) and the near infrared 
(0.75-1.00 μm). The first region corresponds to the in 
vivo red region of chlorophyll absorption and is 
inversely related to the chlorophyll density. The 
second region is related to the fragment of spectrum 
where reflectance is proportional to the green leaf 
density. Vegetation indices derived from remote 
sensing data have emerged as an important tool to 
quantify vegetation biomass, as intermediaries in the 
assessment of LAI, percent green cover, green 
biomass, and fraction of absorbed photosinthetically 
active radiation (fAPAR). 

Many factors can affect reflectance in any given 
waveband, such as: senescence of the plant [66], soil 
background [67], species composition [68], fertiliser 
status [69], nitrogen contents [70] and presence of 
trees in large samples [71]. Another factors 
non-dependent of plants can influence the received 
signals. Tueller [72] has reported that in rangelands, 
especially arid and semi-arid rangelands, soil 
background conditions and shadows often influence 
the signal received by a multispectral scanner, so 
frequently a pre-processing procedure of remote 
sensing data often has to be made to improve quality 
of correlation coefficients [71]. Because the large 
amount of factors affecting spectral reflectance, the 
use of vegetation indices, less dependent of external 
factors, reduce measurement variability due to soil 
type, sunlight intensity, angle of sunlight incidence 
[73] and eliminate noise produced by these and other 
cited factors. 
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Most used vegetation indices are normalised 
differenced vegetation indices (NDVI) and simple 
ratio index (SR). First index used was SR [74], formed 
by dividing the NIR response by the corresponding 
‘red’ band output, (SR = Xnir/Xred) where X can be 
digital counts, at- satellite radiances, top of the 
atmosphere apparent reflectances, land leaving surface 
radiances, surface reflectances, or hemispherical 
spectral albedos. However, for densely vegetated areas, 
the amount of red light reflected approaches very 
small values and this ratio, consequently, increases 
without bounds. Deering [75] normalised this ratio 
from -1 to +1, by rationing the difference between the 
NIR and red bands by their sum (NDVI = [Xnir -Xred] / 
[Xnir + Xred]). For terrestrial targets the lower boundary 
became approximately zero and the upper boundary 
approximately 0.80. Other commonly used indices are 
perpendicular vegetation index (PVI) [76] and soil 
adjusted vegetation index (SAVI) [77, 78]. A review 
of vegetation indices was reported by Jackson and 
Huete [79] and Thenkabail [80]. 

Many studies have shown vegetation indices to be 
related to LAI, pasture biomass, percent green cover 
and fAPAR [81-85]. Relationships between fAPAR 
and NDVI have been shown to be linear [86-89], in 
contrast with the non-linear relationship with LAI [82, 
90, 91], because the signal saturates as the LAI value 
becomes higher than 2 o 3, and as reported by Laca 
and Lemaire [92] estimation of LAI has to be 
restricted to periods of leaf area expansion just after 
sowing or severe defoliation. Other studies have 
shown the NDVI to be related to carbon-fixation, 
canopy resistance, and potential evapotranspiration 
allowing its use as input to models of biogeochemical 
cycles [83, 93-96]. 

Imaging spectrometers (called hyperespectral 
scanners) may provide data at several scales of 
observation: either at surface level by mounting 
teledetection systems at land surface, either by 
airborne systems mounted in aircraft, which more 
typical are Airborne Visible-infrared Imaging 

Spectrometer (AVIRIS) and Compact Airborne 
Spectrographic Imager (CASI). These systems can 
provide reflectance measures in up to 256 wavelength 
intervals at 4 m/pixel, providing both very high spatial 
and spectral resolutions. In a spatial scale, Earth 
Observation Satellites carry broad-waveband sensors 
are commonly used in grassland remote sensing: 
Landsat Enhanced Thematic Mapper (ETM+) and 
Thematic Mapper (TM), Multispectral scanner (MSS), 
Le Systeme pour l’observation de la terre (SPOT), the 
Advanced Very High Resolution Radiometer 
(AVHRR) of the polar orbiting series of NOAA 
(National Oceanic and Atmospheric Administration) 
and the Indian Remote Sensing (IRS) and Linear 
Imaging Self-Scanning (LISS). 

These sensors have provided information in many 
studies, the most developed applications concern the 
land use and the vegetation classification, where 
thematic pixels are chosen as reference classes, and 
all the other pixels are sorted in these classes. 
Remote sensing from satellite data have provided 
accurate estimates of drought monitoring [97], 
estimation of primary productivity in large regions 
[98-100], biophysical and yield characteristics of 
agricultural crops [101-105], crop moisture 
variations [106, 107], leaf pigments [108, 109], 
characterising natural vegetation [110, 111], 
assessing crop or vegetation stress [112, 113], 
highlighting nitrogen or organic matter deficiencies 
[114], detection of crop phenology [115], etc. 
However, as reported by Roderick et al. [116] there 
are some problems of spatial resolution, for example 
pixel size provided for NOAA-AVHRR (1100 m) is 
not suitable at landscape and paddock scales and 
more reduced dimension has to be used [117]. It is 
expected that new satellite systems such as Earth 
Observing System (EOS) and Earth Observing-1 
(EO-1) carrying hyperspectral scanners will open 
researches a new phase in terrestrial applications. 

Some interesting applications of remote sensing 
data are to integrate multispectral data into 
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quantitative models to estimate growth. For example, 
Maas et al. [118] and Moran et al. [119] used remotely 
sensed estimates of LAI and evapotranspiration as 
inputs to a single alfalfa growth model. Lobell et al. 
[120] combined multi-date Landsat ETM+ imagery 
with a field-based model of crop production, obtaining 
good correlation between predicted and real yield (r2 = 
0.82). Others similar studies are increasing in 
literature with the apparition of new data and new 
technologies to develop or to correct some growth 
models [121, 122]. Another interesting application is 
the use of remote sensing data to obtain 
multi-temporal series over time in grasslands, which 
have direct applications in study of global climatic 
changes. With the recent projects of development of 
new satellites in a near future [123] resolution could 
increase to 1-5 m, offering vastly improve spatial 
resolution. But as reported by Roderick et al. [116] 
best applications come from the development of a 
global broad-band communication network that may 
improve global grassland management. 

4. Conclusions 

Many works has shown that non-destructive HM 
estimations in grasslands are statistically acceptable 
when are present both choice of an accurate system 
and the development of a correct model. The choice 
depends of the work scale, resources available and 
precision required. Remote sensing data has shown a 
potential use but not an exact management of 
agricultural systems in past years, due to restrictions 
derived from spatial resolution and technical 
limitations. Modern systems and information 
accessible by networks and international programs are 
increasing researches possibilities to provide farmers 
an improved management of grazing systems. 
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