
Computer Technology and Application 5 (2014) 15-20

Extreme Programming: Strengths and Weaknesses

Ahmad Dalalah

Computer Networks, Quality Assurance Consultant, University of Hail, Hail, Saudi Arabia

Abstract: Meeting deliverable deadline is a critical issue for successful organization. Last minute adjustments characterize software
development due to many reasons including not testing thoroughly. XP (Practicing Extreme Programming), which is an agile software
development methodology, gives rise to the issue of pair programming. This paper aims at discussing the strengths and weaknesses of
an Extreme Programming methodology by examining the characteristics of the 12 software development practices of the XP
methodology. Working together will incur in a highly reliable functionalities to release. Furthermore, moving people around will allow
the team to keep track of the whole project.

Key words: Extreme Programming, release, exploration phase, system metaphor.

1. Introduction―What Is Extreme
Programming?

XP (Extreme Programming) is an agile software

development methodology. It is a lightweight

methodology combining a set of existing software

development practices [1]. XP tends to rapidly develop

high-quality software that provides the highest value

for the customers in the fastest way possible.

Extreme Programming is based on values of

simplicity, communication, feedback, courage, and

respect, which was newly added. It works by bringing

the whole team together in the presence of simple

practices, with enough feedback to enable the team to

see where they are and to tune the practices to their

unique situation [2].

Extreme Programming consists of four main phases:

planning, designing, coding and testing. Each of these

phases includes a number of rules and practices. There

are 12 practices: on-site customers, planning game,

small releases, simple design, system metaphor,

re-factoring, coding standards, pair programming,

40-hours work week, continuous integration, collective

Corresponding author: Ahmad Dalalah, Ph.D., research

fields: computer networks and software engineering. E-mail:
a.dalalah@uoh.edu.sa.

code ownership, and testing. Testing includes both

unite testing and acceptance testing. These are

well-known common software development practices

but XP takes these practices to their extremes.

In addition to these 12 practices: XP has a number of

supporting practices. These supporting practices include:

do the simplest thing that could possibly work, develop

what is immediately required to meet customers need,

coaching to help the team keep in track.

This paper is organized as follows: Section 2

discusses the practices in the planning phase; Section 3

discusses the practices in the designing phase; Section

4 discusses the practices in the coding phase which is

the main phase of the XP methodology; Section 5

discusses the testing phase, this phase includes the unit

testing and the acceptance tests; and Section 6

concludes the report and provides some suggestions for

future work.

2. Planning

The planning phase begins by writing users stories.

User stories serve the same purpose as the use-cases,

but are not the same [3]. User stories are written by the

customer and are used to create time estimates for

release plan. The release plan is then used to create

DAVID PUBLISHING

D

Extreme Programming: Strengths and Weaknesses

16

iteration plans for each of the iterations in the product

life cycle.

The development team needs to release small

releases, iterative versions, to the customers often.

After the first release, the project velocity is calculated.

The project velocity is a measure of how much work is

getting done on your project [3]. The velocity is used to

decide the number of iterations and the time estimates

for each of the iterations. Iterative development adds

agility to the development process..

One of the XP principles is to move people around.

This is done to avoid any knowledge loss that might

cause a coding bottleneck.

The next subsections introduce three practices of the

XP methodology used in the planning phase, these are

the on-site customers, the planning game, and small

releases. For each of these practices, each sub-section

explains the main idea of the practice and discusses the

strengths and weaknesses of the practice.

2.1 On-Site Customers

On-site customer means to include real life

customers in the development process. The customers

will be always available to answer questions, provide

the requirements, set the priorities, and steer the project

[4].

As a result, this will ensure the customers’

satisfaction by including them in and will avoid

frustration caused by negative feedback caused by

misunderstanding the requirements.

On the other hand, it is not realistic to assume that

the customers will be available all the time. The on-site

customer is an ideal situation. Having on-site

customers can sometimes be difficult since customers

do not fully understand the benefits of regular

developer-customer interactions [1], and they do not

want to be bothered by giving feedback to all team

members all the time.

2.2 The Planning Game

There are two key planning steps in XP: release

planning and iteration planning. The planning game

tends to create a time estimate for the release plan. The

release plan is then used to create iteration plans for

each of the iterations. Release planning is a practice

where the developers and the customers decide on

which features will be included in which release and

when it will be delivered. The programmer gives a cost

for each of the stories given by the

customer—exploration phase. The cost is an estimate

of the story difficulty and the time required to develop

the story. Using the cost estimates, and with knowledge

of the features importance, a plan for the project is laid

out and a commitment is done to deliver the features in

the date agreed upon commitment phase. The plan is

not precise as the cost and priorities are not solid.

However, the release plan is revised frequently when

required steering phase.

During iteration planning, the programmers’ break

down the features provided by the customers into tasks,

and estimates their cost. Based on the amount of work

accomplished in the previous iteration, the team signs

up for what will be undertaken in the current iteration

[2]. This gives directions to the team every couple of

weeks.

The planning game is very simple, yet it provides

very good information about what has been done and

what could be accomplished in a two weeks period. It

also provides an excellent steering control for the

customers. The customers are aware of the progress of

the project, and whether the progress is sufficient or

not.

On the other hand, progress is so visible, and the

ability to decide what will be done next is so complete,

that XP projects tend to deliver more of what is needed,

with less pressure and stress [4].

2.3 Small Releases

The development team is required to make small

frequent releases of working software that customers

can evaluate. The first release includes the smallest set

of useful features set. Subsequent releases include

Extreme Programming: Strengths and Weaknesses

17

newly added features.

Small releases are important for both the customers

and the development team. The customer can evaluate

the software or release to end users which is highly

recommended. This evaluation provides necessary

feedback to the development team.

On the other hand, it may be impossible to create

good releases this often. In addition, it is an overhead

for the development team to make a new release in

each iteration and ensure that this release is reliable and

meets the customer requirements. Another thing that

should be taken in consideration is that the customers

might become overwhelmed with evaluating and

commenting the new releases.

3. Designing

XP is an iterative methodology; therefore, design is

a continuous essential process.

In the designing phase, XP concentrates on keeping

things as simple as possible as long as possible simple

design. Choosing a system metaphor is very important

for the development team to keep being organized.

XP encourages the use of CRC (class,

responsibilities, and collaboration) cards to design the

system as a team. XP also encourages the use of spike

solutions to solve technical or design problems. A

spike solution is a very simple program to explore

potential solutions [5].

In order to keep the design simple and avoid any

complexity, re-factoring is required.

The next sub sections begin by explaining the idea of

a simple design and then discuss two other practices

that are the system metaphor and the re-factoring.

3.1 Simple Design

In the designing phase, XP concentrates on keeping

things as simple as possible as long as possible. No

extra functionality is added early with the assumption

that it might be used later on.

A simple design always saves time as it takes less

time to finish. Any complex code should be replaced as

soon as possible. The earlier the code is replaced,the

easier it is to replace it.

Simple design has its disadvantages. As no design

techniques are used and no design diagrams are

produced, the development team will be missing the

“big picture” of the project. This might mislead the

team to developing the software in the wrong way

leading to excessive re-factoring because inadequate

time had been allocated to initial system design [6].

3.2 System Metaphor

System metaphor is a common vision of the project

in hand. The metaphor keeps the development team

organized by providing a naming convention.

A naming convention is very important as it helps

understanding the overall design of the system and

reuse code. It saves time as it makes it easier to find the

functionality you are looking for and to know where to

put certain functionality.

3.3 Re-factoring

Re-factoring is a process of continuous design

improvement to keep the design as simple as possible

and to avoid needless clutter and complexity.

Symptoms that indicates that re-factoring is required

includes: multiple maintenance: functional changes

start requiring changes to multiple copies of the same

(or similar) code. Another symptom is that changes in

one part of the code affect lots of other parts [7].

Re-factoring tends to removing redundancy and

duplications and increasing the code cohesion while

decreasing its dependences. Re-factoring throughout

the entire project saves time, increases quality, and

improves understandability.

Re-factoring should be supported by comprehensive

testing to ensure that nothing is broken.

4. Coding

In the coding phase, XP concentrates on having

coding standards to keep the code consistent and easy

to read and re-factor.

Extreme Programming: Strengths and Weaknesses

18

The coding phase begins by creating test first units.

This helps the developers understanding the

requirements.

Pair programming is one of the practices that

distinguish the XP methodology. Each pair of

programmers writes their code and then integrates it

together in a serial fashion.

The development team has a collective code

ownership. Each team member can change or re-factor

any part of the code.

In the next sub sections five practices are discussed:

the role of code standards in the XP methodology, the

importance of pair programming in XP, the 40-hour

work week, the continuous integration, and the

collective code ownership.

4.1 Coding Standards

Coding standards keep the code consistent and easy

to read and re-factor, which is very important in XP as

it makes the code look as if one developer has written it.

This practice supports the collective code ownership

practice.

4.2 Pair Programming

Pair programming is one of the practices that

distinguish the XP methodology. Each pair of

programmers works together to develop certain

functionality. This increases software quality.

A pair of programmers working together will have

the same productivity as working separately but the

outcome will have a higher quality. The better quality

saves time later on in the project; therefore, pair

programming is considered a good investment.

Pair programming has many advantages. In addition

to a better code quality, it helps with communicating

knowledge and no one developer becomes a bottleneck.

It also allows the programmers to share their

knowledge, learn, and improve their skills.

However, pair programming might be a poor

practice if done in the wrong environment. If the two

programmers have different skill levels, the

higher-level skill programmer might dominate and the

other programmer becomes idle. Personality

differences might also have impact on pair

programming.

4.3 40-Hour Work Week

A 40-hour work-week means that the developers

should not work more than 40 hours per week no

overtime. This will give the developers a comfortable

working environment with no pressure. In pressure

times, up to one week of overtime is acceptable.

Multiple weeks of overtime will exhaust the developers

and reduce their productivity.

4.4 Continuous Integration

XP team should maintain a fully integrated project.

The integration process should be continues and

carefully controlled. Developers should integrate tested

code at least daily. This should be done serially as

parallel integration might lead to serious problems.

Continuous integration often avoids diverging or

fragmented development efforts, where developers are

not communicating with each other about what can be

re-used, or what could be shared [8]. Continues

integration ensures that everyone has the latest version

of the project. Continuous integration also avoids or

detects compatibility problems early.

4.5 Collective Code Ownership

The development team has a collective code

ownership. Each team member can change or re-factor

any part of the code.

Collective code ownership ensures that no one

developer becomes a bottleneck for changes. It allows

programmers to reuse any functionality that might be

required by multiple user stories [9].

Collective code ownership might be difficult to

implement, as it is hard to make the entire team

responsible for the entire project. This practice adds an

overhead that all the developers are required to have all

the knowledge used in the project.

Extreme Programming: Strengths and Weaknesses

19

5. Testing

Test in XP comes in tow types: unit tests and

customer tests.

As mentioned before, the coding phase begins by

creating test first units for each feature to be developed.

The developed feature should pass all the test units to

be considered as completed. This is called unit

testing.

Acceptance tests are test done by the customers to

ensure that the overall application contains all the

required features.

In XP, it is preferable that all tests carried are

automated. Automated testing results in much better

overall product quality.

5.1 Unit Testing

Unit tests are automated tests written by the

developers during the coding phase to test features as

they are developed. Each unit test typically tests only a

single class, or a small cluster of classes [4].

Unit tests are very important as it can save a large

amount of effort. But for approaching deadline, unit

tests are sometimes skipped as it requires time to

develop the unit test and run them.

Often some small changes to the code would also

require that some unit tests needed to be changed or

rewritten because they were to specifically tighter to

the implementation [5].

5.2 Acceptance Testing

Acceptance tests are test done by the customers to

ensure that the overall system contains all the required

features. Acceptance tests are also used as regression

tests prior to a production release [6].

The acceptance tests should be done at each of the

iterations of the process to ensure that the new release

contains all the features agreed upon. The acceptance

test score is published to the team. It is the team’s

responsibility to schedule a time to fix any failed test,

in every iteration [2].

5.3 Possible Weaknesses

During design phase since there are continuous

modifications. Thus, lack of communication might

incur in fatal problems. Therefore, a strong

communication system is required to avoid such

problems.

Pair programming might lead to redo a series of

changes throughout the project, since any pair might

change, modify or even delete any piece of their code.

Modification should be propagated instantly to avoid

any resulting problems.

6. Conclusion and Future Work

XP (Extreme Programming) is an agile software

development methodology. It is a lightweight

methodology combining a set of existing software

development practices [2]. Each of these practices has

its strengths and weaknesses.

The XP methodology has some excellent practices

that have proven useful such as pair programming and

unit tests.

The success of the XP methodology as a software

development process depends heavily on the context of

the project. XP should be implemented with projects

that have a very frequent requirement changes.

It would be better if XP is supported with a

traditional methodology to provide the required design

diagrams and documentations.

References

[1] Schneider, J., and Johnston, L. 2003. “Extreme

Programming at Universities—An Educational

Perspective.” In Proceeding of 25th International

Conference on Software Engineering, 594-99.

[2] Beck, K. 2000. Extreme Programming Explained:

Embrace Change. Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA.

[3] Iteration planning, project manager. Accessed February

2014. http://www.extremeprogramming.org.

[4] Paige, R., Chivers, H., McDermid, and Stephenson, J. Z.

2005. “High-Integrety Extreme Programming.” In

Proceedings of the 2005 ACM Symposium on Applied

Computing, 1518-23.

Extreme Programming: Strengths and Weaknesses

20

[5] Vanderburg, G. 2005. “A Simple Model of Agile Software

Processes or Extreme Programming Annealed.” In

Proceedings of The 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems,

Languages, and Applications, 539-45.

[6] Hedin, G., Bendix, L., and Magnusson, B. 2003.

“Introducing Software Engineering by Means of Extreme

Programming.” In Proceedings of the 25th

International Conference on Software Engineering (ICSE),

586-93.

[7] LeJeune, N. 2005. “Teaching Software Engineering

Practice with Extreme Programming.” Journal of

Computing Sciences in Colleges Archive 21 (3): 107-17.

[8] Grishman, P., and Perry, D. 2005. “Customer Relationship

and Extreme Programming.” ACM SIGSOFT Software

Engineering Notes 30 (4):1-6.

[9] Noble, J., Marshall, S., Marshall, S., and Biddle, R. 2004.

“Less Extreme Programming.” In Proceedings of the Sixth

Australasian Conference on Computing Education,

217-26.

