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Abstract: The main objective of this paper is to analyse the vertical loads effects applied on the pavement, considering the variation of 
tire pressure, from a truck’s front suspension. For the measurements, a durability test track located in Brazil has been used. The tire 
pressure was increased by 10 psi from 90 psi to 130 psi with a constant load of 6 t on the front suspension, the maximum allowed load 
for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the 
tire pressure will not affect significantly the load applied on the pavement. However, it is recommended to repeat the same 
methodology in order to analyse the influence on the variation of the other quarter car model variants. 
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1. Introduction 

1.1 Background 

Besides impacting directly on the vehicle dynamic 

behavior (rolling resistance, ride and handling, fuel 

economy, noise, vibration and harshness), the 

tire-road interaction is also a factor that compromises 

the pavement integrity. As larger loads and vehicles 

appear in the road transportation system, pavement 

damage concerns are taking greater relevance in road 

construction and maintenance activities [1, 2]. 

Vertical dynamic load is directly related to the 

deterioration of the pavement [3]. Therefore, this 

relation can also be extended for the vehicles variants, 

especially for the commercial vehicles (trucks and 

buses). 

By analysing the quarter car model (Fig. 1) [4], it is 

expected that the tire spring rate could influence it by 
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changing the tire pressure. 

Some authors suggest relationship between 

pavement damage, due to tire interaction, such as 

braking [5], different tires configurations [6, 7], and 

even due to different tire pressures [8], but still lack of 

studies that correlate tire pressure with vertical 

dynamic load applied to the pavement. 

1.2 Boundaries and Assumptions 

In order to analyse the influence of the tire pressure, 

it is necessary to keep constant the other variants of 

the quarter car model (Fig. 1): 

 sprung mass and unsprung mass: set as 6 t, the 

maximum allowed weight on the front axle according 

to the Brazilian legislation; 

 primary suspension spring rate and shock 

absorber damping forces: set according to the 

manufacture specification—new components; 

 pavement longitudinal profile: the tests have been 
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Fig. 4  Illustration of a Wheatstone bridge circuit [13]. 
 

capacity of this circuit to detect small changes in 

resistance (R1 to R4), and to allow temperature 

compensation and also voltage adjustment (E and E0) 

[13]. 

The Wheatstone bridge consists of four resistive 

arms (R1, R2, R3 and R4) connected to a supply voltage, 

where each arm can be connected to one or more strain 

gauges [14]. 

Several arrangements of strain gauges and 

resistances are possible in this circuit (1/4 bridge, 1/2 

symmetric/asymmetric bridge and full bridge), each 

one with a specific application. Fig. 5 illustrates the 

quarter-bridge arrangement, the same used in this 

methodology.  

Finally, the result is obtained by associating the 

strain to an electrical signal (analogue), which 

subsequently will be conditioned in a data acquisition 

system [15]. 

2.2 Instrumentation and Calibration 

Uniaxial strain gauges were placed on the main leave 

spring of the 1st and 2nd steering axle (Fig. 6) on the 

LHS (left hand side) and RHS (right hand side) of the 

vehicle. 

The recorded values given by the mentioned 

instrumentation were in µe (micro-strain). Therefore, it 

was necessary to calibrate the system in order to 

estimate the force applied on the pavement. 

A weighting scale has been used and different loads 

have been applied on the vehicle body with the 

objective of having the calibration curves between µe 

and the load applied on the ground in tons (Figs. 7 and 8). 

Due to the fact that all tested springs have the same 

spring rate, all calibration curves have similar 

characteristics. 

For the test procedure, a pothole track has been used 

in the proving ground for the measurements with the 

following conditions (Figs. 9 and 10):  

 vehicle weight: 6 t per front axle; 

 vehicle speed: 40 km/h; 

 new shock absorbers; 

 new spring unit; 

 tire size: 295/80 R22.5. 

It is important to highlight that most of the events on 

the left and right hand sides of the pot hole track are 

different, so different loads on both sides of the vehicle 

would be expected. 
 

 
Fig. 5  Tensile test: strain gauge with quarter-bridge arrangement [9].  
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Fig. 11  Time signal—load applied on the pavement at 110 psi.  

 
Fig. 12  Histogram of the load applied on the pavement—1st axle, LHS.  

Load applied on the pavement-tire pressure: 110 psi (758 kPa) 

PH @ 110 psi (rsp) Ch 1: 1st steering axle, LHS, load 

PH @ 110 psi (rsp) Ch 2: 1st steering axle, RHS, load 

PH @ 110 psi (rsp) Ch 3: 2st steering axle, LHS, load 

PH @ 110 psi (rsp) Ch 4: 2st steering axle, RHS, load 
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Fig. 13  Example of stress-life curve [16].  
 

 
Fig. 14  Example of a sinusoidal load [16].  

4. Relative Damage Calculation 

If a test specimen is subjected to a sufficiently severe 

cyclic stress, a fatigue crack or other damage will 

develop, resulting to complete failure of the 

component/system [13]. 

The data of the different loading levels can be 

presented by a stress-life curve or Wöeler curve    

(Fig. 13). 

The mentioned curve is defined through controlled 

samples that are tested until its complete failure with a 

constant frequency/amplitude sinusoidal load (Fig. 14). 

Through a stress-life curve, it is possible to obtain 

the number of cycles until its failure (1.E + 01 is equal 

to 10) of a signal with constant load (σa, Fig. 13). 

Unfortunately, just few applications have such 

behavior (Fig. 14). 

Within this scenario, Palmgren suggested the 

following equation: 

ேభ

ேభ
  

ேమ

ேమ


ேయ

ேయ
 ڮ ൌ  ∑

ேೕ

ேೕ
ൌ 1    (4) 

where: 

Nj: number of cycles for each constant load; 

Nfj: number of cycles (failure) from stress-life curve, 

for each constant load. 

Basically, Palmgren stated that a component will fail 

when the sum of the ratio between the number of cycles, 

for each segment, and the number of cycles from 

stress-life curves would be equal to 1 (Fig. 15). 

Palmgren created this concept early in 1920, but it 

has been world wide spread through Miner [17], and 

due to that, it was named as the Palmgren-Miner rule. 

On the other hand, Dowling [16] highlighted that for 

loads with high variation levels, it is not feasible to do 

the calculation as stated by Palmgren-Miner. Fig. 16 

presents an example of wing acceleration (in G’s) 

during an airplane real measurements. 
 

 
Fig. 15  Palmgren rule [16].  
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Fig. 16  Example of a real life signal-airplane wing acceleration [16].  
 

 
Fig. 17  Principle of the rainflow cycle counting [16]. 
 

In this way, it is necessary to adopt a procedure 

called rainflow cycle counting, created by Endo and 

Matsushi [18]. This analysis considers a cycle counting, 

if it follows the criteria from Fig. 17. 

With the combination of the peak-valley-peak 

“X-Y-Z” (Fig. 17), a cycle will be considered, if the 

amplitude variation, ∆σyz, is equal or greater than the 

previous amplitude variation [18]. 

Finally, using the concepts from 

Palmgren-Miner/Endo and Matsushi, it is possible to 

define the following equation for the absolute damage: 

ߪ ൌ  
ሺఙౣ౮ ି ఙౣሻ

ଶ
           (5) 

where: 

σa: average amplitude from each rainflow cycle (σmax 

and σmin); 

σmax: max amplitude (peak) of each rainflow cycle; 

σmin: min amplitude (valley) of each rainflow cycle. 

ܰ ൌ  
ଵ

ଶ
ሺඥఙౣ౮ .ఙೌ

ఙ′
ሻ

భ
್           (6) 

where: 

Nfj: number of cycles (failure) from stress-life curve, 

for each constant load; 

σ'f: theoretical loading that indicates failure with zero 

cycle (material property); 

b: stress-life curve slope (material property); 

∑
ேೕ

ேೕ
   : absolute damage. 

Therefore, the relative damage will be the ratio 

between a given tire pressure damage with the baseline 

(110 psi). 

By analysing Fig. 18, it is possible to conclude that 

the relative damage, regarding tire pressure, has no 

significant relation with the vertical load applied on the 

pavement. 
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