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Abstract: Monitoring of industrial plant performance and detection on flaws is important to the successful operation on industrial
production units. Malfunctioning equipment can greatly impact plant performance by reducing the efficiency and increasing the
production cost. Phenomenological equations cannot properly describe industrial processes. Thus, it is necessary to develop new
equations for model industrial operations. The purpose of this study is to develop an empirical model for industrial demethanizer

tower which is malfunctioning due to an error in the design in one of its plates. A nonlinear statistical model was designed to predict
the pressure variation in the column, and consequently, the flooding conditions. This model was validated using industrial data to

predict the maximum loads in the column.
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1. Introduction

Performance monitoring of equipment and
detection of flaws are the key to the successful
operation for industrial units. The performance can be
monitored by comparing real data with the data
predicted by a model [1]. However, phenomenological
models are not always able to predict the behavior of
malfunctioning pieces of equipment [2, 3]. The use of
the multivariate statistical modeling has great potential
for industrial application, especially for modeling
equipment with physical irregularities [4, 5]. For
example, multivariate statistical modeling can be
applied for analyzing fallen or obstructed plates in
distillation columns, catalyst poisoning, or even the
contamination of a stream by an industrial compound.
In early 1990, several scholars began to investigate
the use of statistical models for representing
phenomena that occur in industrial plants [6]. A
formative study on multivariate modeling that laid the
groundwork for many statistical models and became a

reference for future studies [1]. Later on, the
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development of routine processes for computational
data collection enabled much greater access to
operational data, thus leading to more rigorous
statistical treatments [5]. Moreover, Zullo [7] and
Kourti et al. [8] proposed the use of statistical
modeling for monitoring industrial plants. By the end
of the 1990, the first studies using statistical modeling
for analyzing malfunctioning equipment began to
emerge [4, 5, 9].

Rapid detection and diagnosis of malfunctioning
equipment is important because it reduces costs and
impacts [5, 9, 10].
statistical methods offer the abilities to handle large

environmental Multivariate
amounts of data, correlate variables, and measure
errors [8]. These methods make it possible to generate
models that reproduce the plant operations, such that
any deviations can be easily recognized. Because the
variables which contribute to the processes are known,
it is much easier to diagnosis any problems [2, 8].

2. Material and Methods
2.1 Demethanizer Tower

The demethanizer tower is a typical example of a
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column with a divided load [11]. A

configuration for such a column is shown in Fig. 1.

typical

The demethanizer tower is fed by four streams
inserted in different plates. The streams arrive from
the condensation units, each having different

temperatures. Condensation is achieved using
refrigeration cycles and product/feed heat exchangers.

Ethylene is the most desirable product from this
process, and it is present in all of the liquid
condensates. The ethylene which is not condensed
leaves the system with methane in the combustible gas
stream. The loss of ethylene through this stream
should be minimized. Part of the gas that exits the
tower is cooled and continuously fed. A typical feed is
composed of Hy, CO, CH,, C;H,, C;Hy, C,Hg, C3Hy,
C;Hg, C3;Hg, C4Hg, C4Hg, C4Hyp, and Cst at a
temperature of 15 °C, a pressure of 44 bar, and a flow
rate of 4,870 kmolh™.

Three product streams (the first two with low
ethylene content) are obtained from the plant [11].
The stream used to produce fuel gas is composed of
93.2% methane and 6.5% hydrogen. The stream used
to produce 99.9% H, is composed of 80.9% hydrogen
and 18.7% methane. The stream at the bottom is

composed of 68.0% ecthylene and other heavier

hydrocarbons.
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Fig. 1 Demethanizer tower.

2.2 Planning Matrix

Statistical design of experiments was used to create
equations to represent the column head loss and
predict the maximum operation load. The traditional
methodology generates a matrix of tests to determine
the responses from experimental actions. This
methodology is easy to implement in the laboratory
but is very difficult to use in an industrial system. The
handling of operational variables in an industrial unit
is limited, and thus, the variables are generally
extrapolated from values outside of the working range,
for example, using out-of-specification products that
contribute to economic loss.

The solution for the industrial scenario involves
using past operational data which are archived in the
unit’s database. Data from over 10,000 operational
variables and their respective responses (independent
and dependent variables) were used to create the
planning matrix. The challenge in this procedure was
to find the values of the operational variables and their
respective responses that corresponded to each test in
the planning matrix.

Fig. 2 shows a simplified diagram of the stages
which were followed to obtain the values for the
operational variables and their respective responses.

When planning any experiment, the first step is to
determine the factors (operational or independent
variables) and the response of interest (dependent

variable) in the process.

Qollectingdatafromthe
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4

Detection of
grosserrorsand elimination of points

4

Identifythe
pointsof interest

4

Creation of
experimental matrix

Fig. 2 Experimental steps in the design of experiments
process.
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Six independent variables were chosen which could
influence the phenomenon in the demethanizer tower:
the four feed streams in the tower, the reflux flow rate,
and the thermal load. The range for each independent
variable (with extremes coded from -1 to +1) was
defined according to the operational experiment. The
extreme values were used to create the planning
built to identify the
operational conditions for each test and the responses

matrix. A program was
within the 10,000 archived points. For each set of
points (operational conditions), the program scanned
and recognized the archived points with an error of £2%
in addition to determining the frequency. The mean
values of the operational conditions were then
determined, and their responses were inserted into the
planning matrix.

The combined values of the six operational
variables defined in the planning matrix were not
always part of the archived data. Despite using a
universe of 10,000 points, some combinations were
identified.

combination with the least number of variables was

not In this case, the mean of the
used, which led to a distortion of the results.

To validate the existence of the points, a variation
of £3% with respect to the searched values was

initially considered.
2.3 Empirical Equation

An empirical equation to represent the process was
built using planning matrix (X) and its respective

Table1 Operational variables.

responses were

(Y).
determined by

The equation coefficients

least squares regression of the
parameters.

Coefficients = (XX)™'(X'Y) (1)

After determining the empirical equation for the

phenomenon, the model was validated using the real

data from the plant.
3. Results
3.1 Selection of Variables

The 10,000 archived points were evaluated. The
results are shown in Table 1.

The values of the operational variables included in
the planning matrix were represented the lower levels
of the operational variables (-1), the central points (0),
and the higher levels (+1). The central points
were defined as the means of the maximum and
of operational The
values of the (-1) and (+1) levels were defined as £1.2
times the standard deviation added to the central
Amplitudes of =+1.2 times the standard

deviations were responsible for generating the greatest

minimum values variables.

points.

necessary combination needed to create the planning
matrix.

The planning matrix generated with six variables
included approximately 50% of the points. To fill the
gaps, the mean of the combinations of five variables
was used. This shows the difficulty of finding sets of

specific values for operational variables, even when

Variables level F1(th™) F2 (th) F3 (th) F4 (th™) g(hv‘\’;)mal load g eflux (th)
Minimum 64.13 34.15 5.73 443 2.38 3.58
Maximum 90.62 52.35 19.41 12.72 3.95 8.88
Average 79.43 45.84 12.74 9.82 3.18 7.05
Variance 20.57 12.35 3.09 1.55 0.11 0.25
SD 454 351 1.76 1.24 0.33 0.50
1 78.23 44.64 11.54 8.62 1.98 5.85
0 79.43 45.84 12.74 9.82 3.18 7.05

84.87 50.06 14.84 11.31 3.58 7.65

*F1, F2, F3 and F4 are tower feed rates (Fig. 1); SD is a standard deviation.
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Table 2 Planning experiments with five variables.

Test F1 F2 F3 F4 Rf AP* Freq. ** NO Vs
1 -1 -1 -1 -1 -1 238.2 1 5
2 +1 -1 -1 -1 -1 239.1 19 5
3 -1 +1 -1 -1 -1 232.1 7 4
4 +1 +1 -1 -1 -1 236.0 4 5
5 -1 -1 +1 -1 -1 2195 27 4
6 +1 -1 +1 -1 -1 239.0 1 5
7 -1 +1 +1 -1 -1 2253 1 5
8 +1 +1 +1 -1 -1 289.1 1 5
9 -1 -1 -1 +1 -1 215.8 1 5
10 +1 -1 -1 +1 -1 239.0 1 5
11 -1 +1 -1 +1 -1 222.9 1 5
12 +1 +1 -1 +1 -1 231.6 6 5
13 -1 -1 +1 +1 -1 239.6 4 4
14 +1 -1 +1 +1 -1 229.5 2 5
15 -1 +1 +1 +1 -1 271.6 27 4
16 +1 +1 +1 +1 -1 299.8 9 5
17 -1 -1 -1 -1 +1 238.2 1 5
18 +1 -1 -1 -1 +1 240.3 5 5
19 -1 +1 -1 -1 +1 232.1 7 4
20 +1 +1 -1 -1 +1 236.0 4 5
21 -1 -1 +1 -1 +1 219.5 27 4
22 +1 -1 +1 -1 +1 241.7 41 4
23 -1 +1 +1 -1 +1 256.5 2 4
24 +1 +1 +1 -1 +1 289.1 5
25 -1 -1 -1 +1 +1 215.8 1 5
26 +1 -1 -1 +1 +1 241.2 13 4
27 -1 +1 -1 +1 +1 2229 1 5
28 +1 +1 -1 +1 +1 231.6 6 5
29 -1 -1 +1 +1 +1 239.9 2 4
30 +1 -1 +1 +1 +1 229.5 22 5
31 -1 +1 +1 +1 +1 271.6 27 5
32 +1 +1 +1 +1 +1 299.8 9 5

*F1, F2, F3 and F4—tower feed rates (Fig. 1); *kgf-cm; **frequency; ***N° of variables.

using a database with a large number of points. This
occurs because that industrial plants rarely work with
variables over a broad operational range. Thus, the
values of the variables must be solved by eliminating
the operational variables to increase the probability of
their occurrence.

A qualitative study was carried out using an
empirical equation generated with six operational
variables. It was predicted that this equation would

provide a good representation of the phenomenon
because of the large number of non-existent points.
When five variables were considered, the number of
existent operational variables increased to 70% with
respect to the evaluated data.

Using the same amplitude to determine the working
variables and excluding the thermal load, the planning
matrix was generated, as shown in Table 2.

The results of the qualitative study indicated which
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variables affected the phenomenon. The data from
Table 2 were adjusted to a plane with a determination
coefficient (R?) of 88% and a standard deviation of
11.4. The effect of each variable was calculated with
95% accuracy. These values are shown in Table 3
with their significance indicated.

Only the first three feed streams influenced the
pressure variation in the column. Furthermore, only
the first stream had significant interactions with the
other variables. Thus, only the first feed stream
influenced the pressure variation in the column
independently of the values of the other variables.

3.2 First Empirical Model

A quantitative study was performed using the
significant values from the planning matrix to
determine the frequency that the set of variables
appeared in the set of 10,000 points. This produced a
set of existing points of approximately 95%, which
provided a more representative model.

Initially, an attempt was made to adjust the data to a
plane surface, but none of the variables were
significant, with a coefficient of determination (R?) of
60%. Thus, a star matrix was implemented to test the
values from the central points. The data in this matrix
were adjusted to a squared surface with the empirical
function represented in Eq. (2). A coefficient of
determination (R?) of 63% and a standard deviation of
17.2 for the significant variables were calculated.

AP=2528+1354F1+1193F2+1522F3-597F1>

+6.66F2% —3.64F3 + 1.55F1 F2 Q)
+595F1 F3+6.08F2 F3

3.3 Validation of the First Empirical Model

Eq. (2) was validated with the 10,000 points from
the database. The distribution of errors between the
calculated and the real pressure variation is shown in
Fig. 3.

The error distribution was generally negative for the
low-feed streams and positive for the high-feed
streams. In addition, Eq. (2) generated large errors

Table 3 Effects of independent variables.

Variable AP (kgf-cm™) Significant
F1(1) 15.67 Yes
F2(2) 20.14 Yes
F3(3) 21.76 Yes
F4 (4) 1.90 No
Reflux (5) 2.35 No
(H(2) 6.57 No
(H3) 6.08 No
(D)) -2.94 No
(NH(5) -1.59 No
2)(3) 22.94 Yes
2)4) 5.05 No
2)(5) 1.55 No
3)4) 10.80 Yes
3)(5) 1.92 No
() -2.04 No
20
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Fig. 3 Error distribution.

outside the central region and low sensitivity in the
other regions. These tendencies indicated that Eq. (2)
did not adequately represent the phenomenon.

3.4 Adaptation of the Model to the Real Industrial
Plant

The need to determine a new equation led to the
examination of data sets involving two and three
variables, until a new equation was determined to
adequately predict the maximum conditions of the
plant. The effect of the total feed into the column was
then examined while reducing the number of
operational variables. This action influenced the ease
at which points could be identified from the planning

matrix. The planning matrix is shown in Table 4.
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Table 4 Planning experiments.

Test Ft Rf AP (kgf-cm™)
1 -1 -1 205.0
2 +1 -1 287.0
3 -1 +1 211.0
4 +1 +1 302.0
5 -1.41 0 228.4
6 1.41 0 235.1
7 0 -1.41 229.1
8 0 1.41 200.0
9 0 0 270.0
10 0 0 218.0
11 0 0 228.0

The data from Table 4 were adjusted to a

squaredplane,  generating a  coefficient  of
determination of 99% and a standard deviation of 6.8.
Eq. (3) was the empirical function that represented the

phenomenon.

AP =230.87 + 42.48 Ft +10.05 Rf +13.38 Ft*

3)
+838Rf? + 225 FtRf

Eq. (3) was tested using the same 10,000 points
from the database. The responses showed that the
model properly represented all of the studied regions.

However, Fig. 4 shows that the errors generated by Eq.

(3) together with their distributions depend on the
amount of operational data collected from the plant.

Fig. 4 can be divided into three zones. Zone I
includes the errors of the first 4,000 points. Zone II
includes the errors between points 4,000 and 8,000.
Zone III includes the errors found from point 8,000
and up. The best results were found in Zone III, where
the error distribution was random and the values were
within £2%. Thus, Eq. (3) was well suited to evaluate
the data in this step.

The robustness of Eq. (3) was assessed using a new
set of operational data. The set was formed from
10,000 new points collected months after the first data
set. The results are shown in Fig. 5.

Eq. (3) generated values for pressure variation close
to those obtained for the real operation of the
demethanizer tower. The prediction was more efficient
for high total flow rates but adequately represented

1 2 3 1 5 B 7 B 9 10
Cps alenal data number 110

Fig. 4 Error distribution.
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Fig. 5 Evaluation of the empirical model.

the process over the entire range. Fig. 6 shows that the
majority of errors were found within the +4% range.
In addition, the errors being were best distributed for
flow rates higher than 135 t-h™.

Eq. (3) generated values for pressure variation close
to those obtained for the real operation of the
demethanizer tower. The prediction was more
efficient for high total flow rates but adequately
represented the process over the entire range. Fig. 6
shows that the majority of errors were found within
the £4% range. In addition, the errors being were best

distributed for flow rates higher than 135 t-h™.

5 120 125 13¢ 135 140 145 150 188 160 188
Total feed {t-h}

Fig. 6 Error distribution.
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4. Conclusions

Eq. (3) was used in the simulations to predict the
feed rate and reflux rate limits of the demethanizer
tower with no flooding. The first step of the
calculation was to determine the feed rate and reflux
rate of the column using a commercial simulator based
on the load to be processed in the plant. Next, the data
calculated by the commercial simulator were applied
to the model (Eq. (3)) to prevent flooding. The model
identified

calculation of the pressure variation in the tower, so a

the presence of flooding from the

new operational condition was determined considering
the maximum flow rate that would not cause flooding.
The column feed excess was diverted and processed in
another plant. This procedure eliminated losses caused
by flooding and brought about gains because it
allowed processing of greater loads in the
malfunctioning demethanizer.

Eq. (3) was used to predict the maximum column
load for approximately 20 months until the equipment
was stopped for maintenance, at which time the last
column tray was changed.

In conclusion, this methodology will be useful for
predicting equipment operation, especially when
phenomenological equations cannot represent the
malfunctioning piece of equipment, which is a very

common event in industry.
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