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Abstract: Monitoring of industrial plant performance and detection on flaws is important to the successful operation on industrial 
production units. Malfunctioning equipment can greatly impact plant performance by reducing the efficiency and increasing the 
production cost. Phenomenological equations cannot properly describe industrial processes. Thus, it is necessary to develop new 
equations for model industrial operations. The purpose of this study is to develop an empirical model for industrial demethanizer 
tower which is malfunctioning due to an error in the design in one of its plates. A nonlinear statistical model was designed to predict 
the pressure variation in the column, and consequently, the flooding conditions. This model was validated using industrial data to 
predict the maximum loads in the column. 
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1. Introduction  

Performance monitoring of equipment and 
detection of flaws are the key to the successful 
operation for industrial units. The performance can be 
monitored by comparing real data with the data 
predicted by a model [1]. However, phenomenological 
models are not always able to predict the behavior of 
malfunctioning pieces of equipment [2, 3]. The use of 
the multivariate statistical modeling has great potential 
for industrial application, especially for modeling 
equipment with physical irregularities [4, 5]. For 
example, multivariate statistical modeling can be 
applied for analyzing fallen or obstructed plates in 
distillation columns, catalyst poisoning, or even the 
contamination of a stream by an industrial compound.   

In early 1990, several scholars began to investigate 
the use of statistical models for representing 
phenomena that occur in industrial plants [6]. A 
formative study on multivariate modeling that laid the 
groundwork for many statistical models and became a 
reference for future studies [1]. Later on, the 
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development of routine processes for computational 
data collection enabled much greater access to 
operational data, thus leading to more rigorous 
statistical treatments [5]. Moreover, Zullo [7] and 
Kourti et al. [8] proposed the use of statistical 
modeling for monitoring industrial plants. By the end 
of the 1990, the first studies using statistical modeling 
for analyzing malfunctioning equipment began to 
emerge [4, 5, 9].  

Rapid detection and diagnosis of malfunctioning 
equipment is important because it reduces costs and 
environmental impacts [5, 9, 10]. Multivariate 
statistical methods offer the abilities to handle large 
amounts of data, correlate variables, and measure 
errors [8]. These methods make it possible to generate 
models that reproduce the plant operations, such that 
any deviations can be easily recognized. Because the 
variables which contribute to the processes are known, 
it is much easier to diagnosis any problems [2, 8].  

2. Material and Methods 

2.1 Demethanizer Tower 

The demethanizer tower is a typical example of a 
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Six independent variables were chosen which could 
influence the phenomenon in the demethanizer tower: 
the four feed streams in the tower, the reflux flow rate, 
and the thermal load. The range for each independent 
variable (with extremes coded from -1 to +1) was 
defined according to the operational experiment. The 
extreme values were used to create the planning 
matrix. A program was built to identify the 
operational conditions for each test and the responses 
within the 10,000 archived points. For each set of 
points (operational conditions), the program scanned 
and recognized the archived points with an error of ±2% 
in addition to determining the frequency. The mean 
values of the operational conditions were then 
determined, and their responses were inserted into the 
planning matrix. 

The combined values of the six operational 
variables defined in the planning matrix were not 
always part of the archived data. Despite using a 
universe of 10,000 points, some combinations were 
not identified. In this case, the mean of the 
combination with the least number of variables was 
used, which led to a distortion of the results.   

To validate the existence of the points, a variation 
of ±3% with respect to the searched values was 
initially considered. 

2.3 Empirical Equation 

An empirical equation to represent the process was 
built using planning matrix (X) and its respective 

responses (Y). The equation coefficients were 
determined by least squares regression of the 
parameters. 

Coefficients = (XtX)-1(XtY)        (1) 
After determining the empirical equation for the 

phenomenon, the model was validated using the real 
data from the plant. 

3. Results 

3.1 Selection of Variables 

The 10,000 archived points were evaluated. The 
results are shown in Table 1. 

The values of the operational variables included in 
the planning matrix were represented the lower levels 
of the operational variables (-1), the central points (0), 
and the higher levels (+1). The central points    
were defined as the means of the maximum and 
minimum values of operational variables. The  
values of the (-1) and (+1) levels were defined as ±1.2 
times the standard deviation added to the central 
points. Amplitudes of ±1.2 times the standard 
deviations were responsible for generating the greatest 
necessary combination needed to create the planning 
matrix. 

The planning matrix generated with six variables 
included approximately 50% of the points. To fill the 
gaps, the mean of the combinations of five variables 
was used. This shows the difficulty of finding sets of 
specific values for operational variables, even when 

 

Table 1  Operational variables. 

Variables level F1 (t·h-1) F2 (t·h-1) F3 (t·h-1) F4 (t·h-1) Thermal load 
(kW) Reflux (t·h-1) 

Minimum 64.13 34.15 5.73 4.43 2.38 3.58 
Maximum 90.62 52.35 19.41 12.72 3.95 8.88 
Average 79.43 45.84 12.74 9.82 3.18 7.05 
Variance 20.57 12.35 3.09 1.55 0.11 0.25 
SD 4.54 3.51 1.76 1.24 0.33 0.50 
-1 78.23 44.64 11.54 8.62 1.98 5.85 
0 79.43 45.84 12.74 9.82 3.18 7.05 
1 84.87 50.06 14.84 11.31 3.58 7.65 

*F1, F2, F3 and F4 are tower feed rates (Fig. 1); SD is a standard deviation. 
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Table 2  Planning experiments with five variables. 

Test F1 F2 F3 F4 Rf ΔP* Freq. ** Nº V*** 
1 -1 -1 -1 -1 -1 238.2 1 5 
2 +1 -1 -1 -1 -1 239.1 19 5 
3 -1 +1 -1 -1 -1 232.1 7 4 
4 +1 +1 -1 -1 -1 236.0 4 5 
5 -1 -1 +1 -1 -1 219.5 27 4 
6 +1 -1 +1 -1 -1 239.0 1 5 
7 -1 +1 +1 -1 -1 225.3 1 5 
8 +1 +1 +1 -1 -1 289.1 1 5 
9 -1 -1 -1 +1 -1 215.8 1 5 
10 +1 -1 -1 +1 -1 239.0 1 5 
11 -1 +1 -1 +1 -1 222.9 1 5 
12 +1 +1 -1 +1 -1 231.6 6 5 
13 -1 -1 +1 +1 -1 239.6 4 4 
14 +1 -1 +1 +1 -1 229.5 2 5 
15 -1 +1 +1 +1 -1 271.6 27 4 
16 +1 +1 +1 +1 -1 299.8 9 5 
17 -1 -1 -1 -1 +1 238.2 1 5 
18 +1 -1 -1 -1 +1 240.3 5 5 
19 -1 +1 -1 -1 +1 232.1 7 4 
20 +1 +1 -1 -1 +1 236.0 4 5 
21 -1 -1 +1 -1 +1 219.5 27 4 
22 +1 -1 +1 -1 +1 241.7 41 4 
23 -1 +1 +1 -1 +1 256.5 2 4 
24 +1 +1 +1 -1 +1 289.1 1 5 
25 -1 -1 -1 +1 +1 215.8 1 5 
26 +1 -1 -1 +1 +1 241.2 13 4 
27 -1 +1 -1 +1 +1 222.9 1 5 
28 +1 +1 -1 +1 +1 231.6 6 5 
29 -1 -1 +1 +1 +1 239.9 2 4 
30 +1 -1 +1 +1 +1 229.5 22 5 
31 -1 +1 +1 +1 +1 271.6 27 5 
32 +1 +1 +1 +1 +1 299.8 9 5 

*F1, F2, F3 and F4—tower feed rates (Fig. 1); *kgf·cm-²; **frequency; ***Nº of variables. 
 

using a database with a large number of points. This 
occurs because that industrial plants rarely work with 
variables over a broad operational range. Thus, the 
values of the variables must be solved by eliminating 
the operational variables to increase the probability of 
their occurrence.  

A qualitative study was carried out using an 
empirical equation generated with six operational 
variables. It was predicted that this equation would 

provide a good representation of the phenomenon 
because of the large number of non-existent points. 
When five variables were considered, the number of 
existent operational variables increased to 70% with 
respect to the evaluated data.   

Using the same amplitude to determine the working 
variables and excluding the thermal load, the planning 
matrix was generated, as shown in Table 2. 

The results of the qualitative study indicated which 
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4. Conclusions 

Eq. (3) was used in the simulations to predict the 
feed rate and reflux rate limits of the demethanizer 
tower with no flooding. The first step of the 
calculation was to determine the feed rate and reflux 
rate of the column using a commercial simulator based 
on the load to be processed in the plant. Next, the data 
calculated by the commercial simulator were applied 
to the model (Eq. (3)) to prevent flooding. The model 
identified the presence of flooding from the 
calculation of the pressure variation in the tower, so a 
new operational condition was determined considering 
the maximum flow rate that would not cause flooding. 
The column feed excess was diverted and processed in 
another plant. This procedure eliminated losses caused 
by flooding and brought about gains because it 
allowed processing of greater loads in the 
malfunctioning demethanizer.  

Eq. (3) was used to predict the maximum column 
load for approximately 20 months until the equipment 
was stopped for maintenance, at which time the last 
column tray was changed.   

In conclusion, this methodology will be useful for 
predicting equipment operation, especially when 
phenomenological equations cannot represent the 
malfunctioning piece of equipment, which is a very 
common event in industry.  
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