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Abstract: Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing 
through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural 
rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D 
acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, 
showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost 
identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as 
rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case. 
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Nomenclature 

Abbreviations 

AM Additional mass mode shape 

DS Structural dominant mode shape 

DS/AM 
Mixed mode shape, with structural dominant and 
added mass characteristics 

FW Coupled one dimensional flat wave mode shape 

DC Acoustic cavity dominant mode shape 

AR Additional rigidity mode shape 

DC/AR 
Mixed mode shape, with cavity dominant and 
added rigidity characteristics 

closed 
Cavity with Dirichlet boundary prescribed at a 
given direction (rigid wall) 

 

Symbols 

 Transverse direction ݔ

 Longitudinal direction ݕ

 Acoustic fluid pressure ݌

 Fluid density ߩ

 Structural displacement ݑ

ܿ Sound velocity at fluid domain 
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݃ Gravitational acceleration 

 Contour domain ߁

ሬ݊Ԧ Vector normal to contour domain 

ොݑ  Structural displacement approximate solution 

 Fluid pressure approximate solution ̂݌

 ത Structural displacement nodal variables vectorݑ

 ҧ Fluid pressure nodal variables vector݌

ሼܮሽ Derivative vector 

݌׏ ൎ ̂݌׏ Pressure derivative 

ሾܰ݌ሿ Shape factor matrix related to fluid pressures 

ሾܰݑሿ 
Shape factor matrix related to structural 
displacements 

1. Introduction 

Coupled problems related to fluid-structure 

interactions can be found in various branches of 

engineering. The studies of these problems appear in 

several cases of cavities containing fluid and it is 

associated to structures that can be elastic, 

flexible/rigid, as well as in pipes and ducts with fluid 

on the outside/inside, and so on. Since this is a 

multi-physic problem, elements of the global matrix 

are represented by physical and geometrical constant of 

the involved domains, which have very different 

DAVID  PUBLISHING 

D 



Changes in Coupled Vibration Frequencies and Modes of Wall-Cavity 
 Systems Induced by Stiffness Variation in the Structure 

 

1112

magnitudes, that complicates the resolution of these 

systems. Therefore, a segment of the literature is 

dedicated to the study of simplified models. 

The current formulation considers an acoustic fluid 

(without flow), which simplifies the model. The 

movements are small around an equilibrium position, 

where there are only pressure waves. Among the classic 

formulations that deal with coupled fluid-structure 

problems are: (1) the Lagrangian, which has been used, 

for example, by Zienkiewicz and Bettess [1] and Wilson 

and Khalvati [2], among others; (2) the Eulerian, which 

has been characterized by the pressure, a displacement 

or velocity potential for the fluid, and the displacement 

as a variable for the solid, such as described by 

Zienkiewicz and Newton [3] and others [4-7]. 

Considering the numerical disadvantages related to 

unsymmetrical systems, Everstine [5] proposed a 

formulation based on velocity potential to solve this 

problem. Olson and Bathe [8] introduced hydrostatic 

pressures on the formulation and made it possible to 

deal also with static problems. This method was also 

used by Galli and Pavanello [9] among others [10-13]. 

This work uses simple test cases, which can be 

compared to analytical solutions, to show the application 

of the potential formulation (U-P), as described by 

Sousa [14] implemented in ANSYS [15]. Numerical 

results obtained with this software are compared to an 

equivalent analytical solution. Finite element models are 

constructed with simple triangular elements of the plane 

stress state, as well as triangular elements with linear 

interpolation functions for the fluid.  

The proposed development is organized in three 

main categories: (1) theoretical formulation, with the 

multi-physic problem governing equations; (2) 

analyses results, along with numerical and analytical 

solutions, as well as comparison and discussion over 

results; (3) conclusions with final comments.  

2. Theoretical Formulation 

Application of the Galerkin method to the wave 

equation provides, as shown by Everstine [5], Souza 

[13] and Sousa [14]: 
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(1) 

where, n


 is a vector in the normal direction to the 

boundary, where there is interaction with structure. As 

the problem is discretized by finite elements, the 
authors have the pressure p̂ approximated by: 

   pNppp  ˆ ,    pNppp  ˆ  

         pBppNpL       (2) 

where,  TYXL  //}{ . 

By applying the discretized form of the variables in 

Eq. (1), the problem is transformed to the following 

matricial equation (equation of fluid motion, as shown 

by [5, 13, 14]): 

    ][][][  FSpMpK T
ff

 
 

      0][][  pRpSLu 
      

(3) 

where:  

[Kf] = stiffness matrix of the fluid;  

[Mf] = mass matrix of the fluid;  

[FS] = fluid-structure coupled matrix; 

[R] = radiation condition matrix at infinity;  

[SL] = free surface matrix.  

The coupled problem is solved simultaneously by 

the classical equations of motion of the structure Eq. (4) 

and the fluid Eq. (5). 

In the structural equation of motion, the vector of 

forces [FS] can be transformed into two vectors: a 

vector of forces (f) and a generic vector of force due to 

fluid pressure at the interface with the solid domain 
“[FS]. p ”. Therefore, the equations of motion for the 

solid and fluid domains are [5, 13, 14]: 
         KuCuM EEE    

       fpFSu            (4) 
     ][][][  pRpSLpM f


 

    0][][  uFSpK T
f

      
(5) 

The above equations can be arranged in a single 

matricial equation: 
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       **}.{*}.{* fKCM   
  (6) 

where, M*, C* and K* are similar to mass, damping 

and stiffness matrices of an uncoupled system. The 

vector {} involves all degrees of freedom of the 

system (displacement and pressure). 

Eq. (4) represents the most complete case of 

fluid-structure problem. However, to simplify the 

eigenvalue problem, matrix [C*] can be eliminated 

which involves the structural damping and the 

radiation condition, as well as the free surface [SL], 

while transforming f* = 0. 

Moreover, in the case of natural vibrations, the 

displacements of the structure and fluid pressure vary 

along time, with a circular frequency . Thus, the 

authors can write the second derivate of function  in 

time, i.e,   2 . Then, Eq. (6) is given by: 

([K*]2[M*]).{ } = 0. 

This expression is the classical form of the 

eigenvalue and eigenvector problems. Solution of this 

latter equation provides the natural frequencies and the 

vibration modes of the system. 

3. Results and Discussion 

A test case is an open acoustic cavity, 1 m2 × 1 m2, 

with a rigid plate at the bottom, which is supported by 

an elastic spring (Fig. 1). It has rigid walls and the 

flexible base is modeled through a rigid plate with one 

vertical degree of freedom.  

Material properties:  

Solid domain: 

;05.0 mt  3.0
m

N
K 000,80 , 

;10×1.2
2

11

m

N
E   

Fluid domain: 

;800,7
3m

kg
s  ;000,1

3m

kg
f  ;1025.2 2

9

m

N


mL 1 ; smc /500,1  

3.1 Natural Frequencies and Vibration Modes for the 

Uncoupled Structure and Reservoir Using Proposed 

Analytical Expressions 

The uncoupled natural modes of the structure were 

obtained analytically, and the numerical ones using 

ANSYS. The natural frequencies of the structure can 

be obtained by combining the dynamic behavior of the 

beam in bending condition and on an elastic base 

(springs) as show by Souza [13]:  
2/1

2
4

42
4
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






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fk

m

EI

L

i
if





     

(7) 

where,  

EI = bending stiffness;  

m = mass per unit length of beam;  

kf = stiffness of elastic support per unit length of 

beam;  

 = spacing between springs; 

L = length of the beam.   

In numerical solution, the solid mesh has 34 nodes 

with 16 triangular linear elements (plane stress state), 

arranged in a layer (Fig. 1a).  
 

               
(a)                                                     (b) 

Fig. 1  A test case: (a) open cavity with a rigid plate at the bottom; (b) mesh used in the discretization by FE of model. 
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The analytical natural frequency of the uncoupled 

cavity can be expressed as Ref. [13]:  
22
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(8) 

The vibration modes of the uncoupled cavity are 

obtained with the transfer matrix method as shown by 

Pedroso [10] and Souza [13], whose frequencies are 

given in Table 1.  

3.2 Uncoupled System Numerical Solution Results and 

Comparison with Proposed Analytical Expressions 

The mesh used in the discretization of the fluid 

domain has 512 elements (regular triangular elements), 

with a total of 289 nodes (Fig. 1b). Table 1 compares 

analytical and numerical results for the structure and 

uncoupled acoustic cavity.  

The authors can observe that the zero mode (i = 0) is 

the “piston” mode with rigid body movement and 

constant deformed modal. Fig. 2 illustrates the first five 

typical modes of the uncoupled cavity and their natural 

frequencies. 

3.3 Natural Frequencies and Vibrations Modes for the 

Coupled System Using Proposed Analytical 

Expressions 

Analytical solution, Eq. (9) allows the calculation of 

natural frequencies of the coupled problem, as shown 

by Pedroso [10]: 




 





  tg

12

      
(9) 

where: 

SL

m

m

m

ff

s


   ratio between structure and 

fluid masses; 

S

KL

L

Scf

K


 

2  ratio between structure and 

fluid stiffnesses;  
 = L/c  compressibility parameter. 

The coupled frequency is the combination of the 

uncoupled natural frequency in the x direction with the 

coupled frequency of the cavity, which can be 

expressed as follows [10]: 
2

,
2

, ycoupledxuncoupled  
     

(10) 

 

Table 1  Analytical and numerical uncoupled frequencies for the structure and uncoupled acoustic cavity (rad/s). 
 

Mode Index  
 

Uncoupled structure 
Mode  nx ny 

Uncoupled fluid 

Analytical 
with spring 

Numerical 
with spring 

Error
(%) 

Analitical 
Eq. (7) 

Numerical 
ANSYS 

Error  
(%) 

1 i = 0  14.32 14.32 0.00 1 0 1 2,356.19 2,357.14 0.04 

2 i = 1  739.29 740.16 0.12 2 1 1 5,268.61 5,282.53 0.26 

3 i = 2  2,956.65 2,970.06 0.45 3 0 3 7,068.58 7,094.34 0.36 

4 i = 3  6,652.40 6,721.12 1.03 4 1 3 8,495.38 8,558.33 0.74 

5 i = 4  11,826.47 12,045.49 1.85 5 2 1 9,714.84 9,788.57 0.76 
 
 

   
(a) Mode 1  (b) Mode 2  (c) Mode 3  (d) Mode 4  (e) Mode 5  

2,357.14 rad/s 5,282.53 rad/s 7,094.34 rad/s 8,558.33 rad/s 9,788.57 rad/s 

Fig. 2  Representation of uncoupled cavity vibration modes obtained with ANSYS. 
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Table 2  Coupled analytical frequencies for the wall-cavity system (rad/s). 

ny 
nx 

0 1 2 3 4 5 6 7 

1 7.59 - - - - - - - 

2 3,586.65 5,922.05 10,084.17 14,585.05 19,187.75 23,833.37 28,500.91 33,181.14 

3 7,758.90 9,077.84 12,207.66 16,126.38 20,383.97 24,806.57 29,319.59 33,886.94 

4 12,237.80 13,113.70 15,446.33 18,698.18 22,473.72 26,550.48 30,809.10 35,183.61 

5 16,830.40 17,477.63 19,289.57 21,980.00 25,269.88 28,955.59 32,904.39 37,032.21 

6 21,471.60 21,982.65 23,449.03 25,707.78 28,571.60 31,877.82 35,503.08 39,359.30 

7 26,137.30 26,558.70 27,784.61 29,715.61 32,225.20 35,189.82 38,504.49 42,086.60 
 

Eq. (10) enables the construction of Table 2, in 

which the first line represents the uncoupled modes in 

the transverse direction (x) (nx = 0, 1, 2, 3, ... 7). While 

the first column corresponds to the coupled modes in 

the longitudinal direction (vertical y) (ny = 1, 2, 3, 4 ,..., 

7) Therefore, to generate Table 2, the authors use the 

composition of the analytical frequencies in directions 

x and y. 

The result of 7.59 rad/s is the typical frequency of 

added mass for   1 (incompressible fluid). To 

generate the vibration modes of the cavity for the 

coupled problem, the authors can use the same 

reasoning. The authors develop the combination of the 

uncoupled vibration modes for a closed cavity in x 

direction with the coupled vibration modes for an open 

cavity in y direction. Thus, the authors get the modal 

form expression in both directions [10].  

( , ) c o s x

x

n x
p x y

L

 
  

   

. . c o s
y y

tg s e n
L L

                   

(11) 

3.4 Coupled System Numerical Solution Results and 

Comparison with Proposed Analytical Expressions 

The discretization by finite elements of the coupled 

problem is presented below. Meshes of fluid and 

structural domains are the same as those adopted for 

the uncoupled case. 

Figs. 3 and 4 correspond to the first five modes of 

the open coupled cavity with their natural frequencies, 

obtained with the ANSYS software using, respectively, 

E = 2.1 × 1011 N/m2 and E = 2.1 × 1015 N/m2. 

Table 3 summarizes the results of the first five 

numerical and analytical frequencies for the coupled 

case, respectively, with modulus of elasticity E = 2.1 × 

1011 N/m2 (flexible structure) and E = 2.1 × 1015 N/m2 

(rigid structure). Moreover, it shows the differences in 

percentage between the analytically and numerically 

calculated values. These results present good 

agreement between them with small maximum errors 

(< 10%) for most of the frequencies analyzed in Table 3. 

Therefore, it is possible to predict the numerical results 

even for higher frequencies of the system from the 

coupled analytical solution, given by Eq. (10). Indeed, 

the analytical solutions are obtained by superposition 

of two independent 1-D solutions. 

The columns indicated with * symbol was obtained 

with the inclusion of the additional mass (through the 

frequencies relation fwater/fvacum), that was a result from 

coupled problem and then applied in the solution of the 

uncoupled beam.  

It is noted that when the rigidity of the structure 

increases, only pure acoustic modes of the cavity arise, 

because the modes of the structure are eliminated in 

this range of frequencies, as shown in Fig. 4. 

Comparing the 2D representations in Fig. 4 with Fig. 2, 

the authors can see the similarity of the signature 

modes, with corresponding to sequence order.  

The vibration modes of the coupled problem present 

a certain difficulty in the analysis and interpretation, as 

modes with typical characteristics of the structure, 

cavity and mixed (cavity + structure) appear, as shown 

in Fig. 3. In the analysis and interpretation of the modal 

shapes associated with the coupled fluid-structure 

problem, the following signature modal (default) is 

observed: 
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AM DS/AM DS/AM FW DC/AR 

   
(a) Mode 1 (b) Mode 2  (c) Mode 3  (d) Mode 4  (e) Mode 5  

7.28 rad/s 550.28 rad/s 2,506.30 rad/s 3,590.02 rad/s 5,944.02 rad/s 

Fig. 3  Representation of coupled vibration modes obtained with ANSYS (E = 2.1 × 1011 N/m2). 
 

   
(a) Mode 1  (b) Mode 2  (c) Mode 3  (d) Mode 4  (e) Mode 5  

7.28 rad/s 3,586.63 rad/s 5,277.18 rad/s 7,803.09 rad/s 8,550.16 rad/s 

Fig. 4  Representation of coupled vibration modes obtained with ANSYS (E = 2.1 × 1015 N/m2).  
 

(1) Typical AM (additional mass) mode with lower 

frequency. In this case, the structure shows deformed 

rigid body movement (piston), a cavity with 

incompressible fluid and a ramp like mode; 

(2) Structural dominant modes (typical deformed 

modes of the structure) with additional mass (DS/AM). 

The frequencies have values lower than the frequencies 

of the uncoupled structure. The fluid follows the 

structural deformed shape. There is no excitation of the 

cavity modes. When the fluid is disturbed, it acts as an 

additional mass on the structure; 

(3) Dominant modes of the cavity with additional 

rigidity (DC/AR). Related to mode shapes of the 

uncoupled cavity with frequencies is higher than these 

cavity frequencies. The structure follows the pressure 

mode shapes of the cavity. The cavity behaves as if it 

acquired additional rigidity; 

(4) Modes with FW (flat waves). It is characterized 

by strong coupling in the direction of the rigid body 

movement of the structure. The cavity reproduces the 

deformed 1D shape in the piston’s direction in the 

order of its index (ny). While in the transverse direction 

(x), the constant pressure mode always appear      

(nx = 0), replicating the unidirectional shape mode of a 
 

Table 3  Analytical and numerical coupled frequencies for the cavity with E = 2.1 × 1011 N/m2 and E = 2.1 × 1015 N/m2.  

Mode 
index 

Cav. 
mode 

 

 

Str. 
mode  

Frequencies with E = 2.1 × 10 E11 Cav.
mode

Frequencies with E = 2.1 × 10 E15 

Numerical 
coupled 

Analytical 
coupled 

Analytical
coupled* 

Dif.*
(%) 

Mode 
type* 

Numerical 
coupled 

Analytical 
coupled 

Dif. 
(%) 

Mode  
type nx ny  ni nx ny

1 0 1*  0  7.29 7.59 7.59 3.95 AM 0 1 7.29 7.59 3.95 AM 

2 - -  1  550.28 739.29 549.38 0.16 DS/AM 0 2 3,586.63 3,586.65 0.00 FW 

3 - -  2  2,506.3 2,956.7 2,494.27 0.48 DS/AM 1 2 5,277.18 5,922.05 10.89 DC/AR  

4 0 2  -  3,590.02 3,586.65 3,586.65 0.09 FW 0 3 7,803.09 7,758.90 0.57 FW 

5 1 2  -  5,944.02 5,922.05 5,922.05 0.37 DC/AR 1 3 8,550.16 9,077.84 5.81 DC/AR  

6 - -  3  5,961.23 6,652.4 5,898.96 1.06 DS/AM 2 2 9,787.95 10,084.17 2.94 DC/AR  

7 0 3  -  7,791.15 7,758.9 7,758.9 0.42 FW 2 3 11,944.96 12,207.66 2.15 DC/AR  
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closed-closed cavity to its zero mode.   

As a procedure to eliminate the modes of the 

structure in the coupled problem, the rigidity of the 

solid was increased, considering a higher elasticity 

modulus  (fictitious)  of E =  2.1×1015
  N/m2.  For this 

value of E, the cavity behaves as if it had a rigid wall. 

The modes that appear for standard E, which are not 

dominated by the cavity, are separated from the series 

and analyzed isolatedly. In any case, the modes suggest 

the influence of flexibility of the structure in the 

process of defining the origin (and/or prevalence) of 

the solid in the resulting modal signature. 

It is also observed that the modes in the transverse 

direction (nx ≠ 0) do not nullify the effect of coupling, 

but allow the combination of coupled modes in (y) with 

the uncoupled cavity modes in (x). 

4. Conclusions 

When a higher elasticity modulus (E) is used, the 

dominant modes of the structure are eliminated and the 

values of natural frequencies of coupled cavity 

reproduce almost the same values of the uncoupled 

cavity case, but with slightly smaller magnitudes. 

However, the coupled one-dimensional modes (flat 

waves in y) are similar to those that appear in the 

uncoupled case, but with lower frequencies. Therefore, 

the difference between the analytical and numerical 

values is small, since the dominant modes of the 

structure are removed. Therefore, it is possible to 

evaluate coupled frequencies values. 

These results present a good agreement for cases of 

reservoirs with a flexible bottom. Moreover, the 

frequencies and uncoupled numerical vibration modes 

of the structure were also compared with analytical 

solutions, showing satisfactory values. 
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