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Abstract: With the growing energetic need present in the world, it is increasingly necessary for the researches and facilities to seek a 
better use of renewable natural resources. This paper is applied in the study of the performance of the aeration system of the Francis 
turbines present in Itaipu Hydroelectric Power Plant. When a Francis turbine operates off its optimal conditions, a vortex is formed 
inside the draft tube that, besides produces cavitation and pressure fluctuations, can pulse at frequencies with risk of resonance with 
hydraulic system, producing efforts and vibrations that may cause structural failures in the turbines, generators and civil parts of the 
power house. These damaging effects can be reduced using atmospheric aeration of the turbines. Because of this, the availability and 
effectively of the aeration system is fundamental to smooth the behavior of the turbines, helping preserve the health of the power 
plant. An analysis of the performance of the aeration system will be done using maintenance records and disturbances analysis 
reports (RAP), allowing verification of the operating conditions of the turbine and fatality of water inlet in air pipes. Through the 
improvements detected, it is possible to reduce machine stoppages by tripping, thus increasing the availability of the turbines. 
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1. Introduction 

The energetic capacity throughout the world is 

increasingly growing. In the year of 2010, the United 

States led the ranking with 1,039 gigawatt of installed 

capacity, followed by China with 998 gigawatt and 

Japan with 287 GW. Holding the ninth place, Brazil 

had an installed capacity of 114 GW, which main 

energetic sources were hydroelectric, thermal, 

biomass, nuclear and wind power. 

The predominant energy source in Brazil is the 

hydroelectric, with a installed capacity of 81 gigawatt, 

a number that put the country in second at the world 

rank, losing only for China with 219 gigawatt of 
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installed capacity [1]. A comparison among countries 

and its energetic sources is shown in Fig. 1. 

With the growing energetic need in the world 

comes the necessity to research developments seeking 

a better use of renewable natural resources. Brazil is 

the holder of one of the biggest existing hydrous 

potential and, therefore, it is indispensable the good 

operation of the country’s hydroelectric power plants. 

The most important hydroelectric power plant in 

Brazil is the Itaipu Binacional, with 20 generating 

units, providing 14,000 megawatt and assuring the 

rank of biggest hydroelectric power plant in clean and 

renewable energy production of the world. With this 

generation, currently Itaipu supplies 17% of the 

demand of electrical energy on Brazil and 75% of 

Paraguay correspondently [2]. 
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Fig. 1  (a) Total and (b) hidroelectric energetic installed 
capacity in 2010. 
 

The hydroelectric plants are versatile in meeting the 

load variations in the SIN (interconnected system). 

However, either hydrological or systemic issues they 

have to operate outside their optimal hydraulic 

conditions. 

Hydraulic machines are used since antiquity to 

convert water’s kinetic and potential energy into 

other forms of energy, like watermills, used since 

ancient Greece. Unlike pumps, which provide energy 

to the fluid, turbines extract the fluid’s energy 

through a component called rotor, wheel or runner 

via a set of vanes, blades or buckets mounted on the 

wheel [3]. 

Although, factors that reduce the eficiency, cause 

structural damage or even failure of the turbines are 

frequent and, most of time, impossible to eliminate. 

One example is the vortexes generated in the draft 

tube that may cause severe damage to the turbine’s 

structure and foundations. Therefore, methods must be 

proposed and studied to minimize these effects and 

increase to maximum the turbine’s operative 

availability. 

The paper is organized as follows: Section 2 

describes the hydraulics phenomena in Itaipu 

turbines, its effects and the aeration system used to 

smooth its behavior; Section 3 is dedicated to present 

the aeration valves installed; Section 4 shows the 

kind of devices of protection used; Section 5 

analyses one attempt of modification of the aeration 

systems operation philosophy during faults; Section 

6 discusses the performance of the aeration system; 

and Section 7 gives the conclusions and comments 

about future work. 

2. Problem Description and the Use of 
Aeration Systems 

2.1 Core Vortexes 

In hydraulic turbines with a Francis rotor, the same 

used in Itaipu power plant, occurs two main kinds of 

phenomenon at the draft tube, called low load vortex 

(helical vortex or vortex rope) and the full load vortex 

(an oblong vortex). These core vortexes consist of a 

low pressure volume of water vapor, how illustrated in 

Fig. 2 referent the reduced model tests of Itaipu 

turbines. Both represent a forced dynamic excitation 

to the hydraulic system caused by the movement of 

these vortexes in the flow below the turbine. The full 

load vortex is a balanced radial pulsating volume and 

the low load vortex is a radial and axial unbalanced 

volume due to the turning of its helical volume. 

When analyzing the velocity triangle in the 

turbine’s blade, it is possible to easily understand how 

this swirling is formed. Francis turbines working at 

optimal project conditions have a purely axial exit 

water flow, as shown in Fig. 3, however, when 

working at partial or full load, i.e., not optimal 

conditions, the fluid exiting the turbine wheel has a 

tangential velocity component Vt , creating a tendency 

in the fluid to swirl. 

The effects of partial and full load in velocity and 

vortex formation can be easily understood by 

analysing the velocity triangle in the turbine’s blade 

trailing edge, shown in Fig. 3. Vlinear is the velocity 

component due to the rotation of the turbine and 

Vrelative is the component due to the blades outlet angle. 

The composition of these results at the axial Vefective 

velocity that is vertical on vertical Francis turbines. 
 

 
Fig. 2  Vortex rope formed in the draft tube. 
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Fig. 4  Frequ
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3. Aeration Valve of Itaipu Turbines’ 

Acting as the core of the aeration system, the 

aeration valve is a device that allows or interrupts air 

supply to the draft tube. Its shaft has three 

self-lubricating bearings and its axial movements are 

damped by oil dashpots. 

To prevent eficiency loss, the air flow through the 

valve is limited to a maximum of 2% (at atmospheric 

pressure) of the water flow in the turbine. A more 

detailed view of the valve can be seen in Fig. 6. 

Installed on top of the generator shaft (EL. 106.35), 

the valve was projected to start opening under a 

vacuum of 4,903 N/m2 and be fully opened under 

15,690 N/m2. Using the area shown in Fig. 6, it is 

possible to calculate the forces corresponding to the 

mentioned pressures. Therefore, for an area A = 0.276 

m2, the forces found were: 

൬
ܨ

ܨ
൰ ൌ ቀ

1,343 N
4,330 Nቁ       (1) 

where, Fo is the necessary force to start open the valve 

and Ffo is the minimum force acting on the valve to 

keep it fully opened. 

In full load range, operation region studied in this 

paper, the valve should open in a range from heads 

between 102 m to 126.7 m. To lower net heads, the 

valve does not open, however, the vortex in the draft 

tube is drastically reduced or non-existent [7]. 

4. Protection and Alarms of the Aeration 
Valve 

The aeration system can be very useful by reducing 

the turbine instabilities, however, if operation and 

maintenance conditions are adverse, even catastrophic 

failures can happen. 

The aeration valve’s main purpose, as already said, 

is to allow atmospheric air into the turbine. But, in 

some conditions of downstream level and distributor 

opening, water from the turbine can rise until the 

valve’s level and even go thought it, if the the valve is 

failed [8]. 

One of the characteristics of this valve is sealing the  

 
Fig. 6  Aeration valve. 
 

pipe in which it is installed. If this sealing is 

compromised or the valve fails letting water go 

through it, there is a high chance of occurring water 

leakage to the generator’s components (e.g., slip ring, 

rotor and bearings). 

To prevent this leakage from occurring, sensors 

were installed in the aeration and drainage pipes as 

shown in Fig. 7. Those sensors are level sensors, 

detecting the presence of water and, after a certain 

value, send a signal to a relay that shuts down the 

turbine (trip). 

The sensor in the drainage pipe is named 71WA 

and the sensor in the air admission pipe is named 

71AH. These, when actuated, send a trip signal to 

relays 86N and 86E, respectively. Relays number 86 

are lockout relays, this means that, during a fault 

condition, it locks out the breakers to prevent 

re-energizing the system and, after that, they can only 

be reset manually. 
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Fig. 7  Case study of aeration valve failure. 

5. Case Study of Aeration Valve Failure 

According to the philosophy of the aeration system 

design, the isolating valves motorized of the aeration 

pipes indicated in Fig. 7 are automatically closed 

when a blockage of the generating unit occurs and 

shall remain closed after the generating unit stop.  

If the valve was working normally, it would be 

closed, preventing water to enter the aeration box and 

leak to the generator’s components. However, if it is 

failed, water would pass through it and reach the 

aeration and drainage ducts. With the machine stopped, 

the labyrinth tightness is non effective and a flow of 

water takes place in the drainage duct. 

However, at this situation the aeration box is 

pressurized by downstream level. Searching for 

reduce the water pressure in this housing under 

aeration valve fault condition was made an evaluation 

of the change effects of this philosophy. This study 

was made considering the generating unit fully 

stopped. 

To find the water flow in each duct, Bernoulli’s 

equation was used considering two sections: one at the 

downstream river level (1) and the other at the end of 

each duct (2): 

ଵݖ  
௩భ

మ

ଶ


భ

ఊ
ൌ ଶݖ 

௩మ
మ

ଶ


మ

ఊ
      ሺ2ሻܪ

where, zi is the elevation (m), vi is the fuid velocity 

(m/s) and Pi is the pressure (Pa) of each section (for i 

= 1, 2), g is the gravitational acceleration (m/s2), is the 

specific weigh of the fluid (N/m3) and Hl is the head 

loss (m) considered through Sections 1 and 2 and 

calculated using Eq. (3). 

ܪ ൌ ܪ  ∑             (3)ܪ

where, Hmi are the minor head losses, calculated using 

Eq. (4) and Hma is the major head loss, calculated 

using Darcy-Weisbach’s equation (Eq. (5)). 

ܪ ൌ ܭ כ
௩మ

ଶ
              (4) 

ܪ ൌ ݂



כ

௩మ

ଶ
              (5) 

where, K is the loss coeficient, f is the Darcy friction 

factor approximated using the Moody diagram, L the 

tube length (m) and D the tube diameter (m). 

Minor head losses were considered for the wheel, 

aeration valve, labyrinth, entrances and elbows of 

drainage and aeration ducts and the butterfly valve in 

the aeration ducts. 

From the downstream river level until the entrance 

of the main duct in the turbine wheel, head loss was 

not considered for it is approximately zero. Specific 

weight used is from water at 20 °C, therefore ߛ = 

9,789 N/m3, for a gravitational acceleration of g = 

9.81 m/s2. 

The relation between the area of each minor loss 

and the water flow is given in Eq. (6). 

ܳ ൌ ݒ   (6)                ܣ

where, Q is the flow (m3/s) and A is the area (m2). 

Using the equations shown was possible to 

calculate the maximums flow through aeration valve 

and the pressure in the aeration box, where three cases 

were studied with the following results for a 

downstream level at 140 m: 

 Case 1: both aeration ducts closed 

Q1 = 0.1 m3/s; P1 = 3.3 bar; 

 Case 2: one aeration duct closed and one opened 

Q2 = 1.8 m3/s; P2 = 1.2 bar; 

 Case 3: both aeration ducts opened 

Q3 = 2.4 m3/s; P3 = 0.4 bar. 

Despite of the benefit of minor water pressure in the 

aeration box at the cases 1 and 2, decided do not 

change the philosophy of automatic closing of the 

isolating valves during actuation of the protective 

devices 71WA and 71AH. However, after machine 

shutdown the operator can analyse the general 
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