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Abstract: Rhodococcus erythropolis R1 is a capable strain in bioconversion of dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP) 
in oil model. In order to prevent the contamination of biodesulfurization (BDS) products by free cells, microbial cells were immobilized 
using different materials such as magnetic Fe3O4 nanoparticles (NPs). In this study, magnetic NPs were produced by two different 
procedures and their characteristics were determined via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Also, 
binding of NPs on the cell surface was studied and better NPs were used for cells immobilization. Both NPs were crystallized and less 
than 10nm. The BDS by immobilized cells was carried out in biphasic system, and media conditions were optimized statistically by 
response surface methodology (RSM). The DBT concentration, temperature and interaction between them had statistically significant 
effects on 2-HBP production by nanomagnet immobilized cells. The optimum DBT concentration, temperature and pH for 2-HBP 
production by immobilized R. erythropolis R1 were obtained at 6.76mM, 29.63 °C and 6.84 respectively by HPLC analysis.  
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1. Introduction  

The extensive consumption of sulfur-rich fossil fuels 
leads to release a number of harmful chemicals such as 
sulfur oxides, which in turn, causes severe 
environmental problems including air pollution and 
acid rain. In fact, a major part of the petroleum sulfur 
content consists of organic compounds which are hard 
to separate through conventional methods and are 
considered as one of the major problems in crude oil 
refining [1]. For instance, it is reported that some 
organic components such as dibenzothiophene (DBT) 
remain in the oil even after desulfurization   
processes [2]. As a remedy, several effective 
bioprocesses have been developed based on the ability 
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of a few bacterial strains such as Rhodoccocus species 
which can remove sulfur from organic compounds like 
DBT and produce 2-hydroxybiphenyl (2-HBP) as the 
final product without causing oxidative loss of fuel 
carbon [3]. Although bioprocesses have been shown to 
be promising in organic desulfurization, there are still 
certain problems within the system which hindered 
their large scale application. For example, using the 
free cells in BDS leads to formation of a two phase 
oil/water mixture containing the suspended cells which 
requires cost intensive unit operations e.g. 
centrifugation at the downstream of the process. In 
addition, there is a possibility to have cell 
contaminations at the final products [4].  

To address the problem, immobilization methods are 
frequently used in the industrial processes. Clearly, 
immobilization has inherent advantages compared to 
the free cells including enhanced stability of the system, 
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easy separation of cells, minimizing or eliminating the 
cell contaminations in the products, convenient 
recovery and re-use of cells which enable their frequent 
use in the process [5]. Magnetic separation is a 
promising technology in the support systems for 
immobilization, since the rapid separation and easy 
recovery of immobilized cells could be reached in an 
external magnetic field, and the capital and operation 
costs could also be reduced [6]. In this study, magnetic 
Fe3O4 nanoparticles (NPs) were prepared in two 
different procedures, their characteristics were 
investigated and appropriate NPs were used for 
immobilization of bacterial cells.  

Some factors such as pH, temperature and the 
concentration of DBT can affect the BDS rate of 
immobilized cells. Evidently, maximum BDS 
efficiency can be achieved by setting the parameters at 
their optimized values. Response surface methodology 
(RSM) is a statistical method based on the multivariate 
non-linear model and has some advantages including 
reduction in the time and number of experiments   
and improvement the statistical interpretation  
possibilities [7]. Consequently, the RSM was used in 
this paper to optimize the important parameters and to 
increase the BDS efficiency of the immobilized cells in 
oil/water biphasic system. 

2. Materials and Methods 

2.1 Chemicals 

Ferric chloride (FeCl3·6H2O), ferrous chloride 
(FeCl2·4H2O) and methanol (HPLC grade) were 
purchased from Sigma Chemical Co. DBT and 
n-tetradecane were purchased from Merck. 2-HBP was 
prepared from Fluka Chemical Co. All other chemicals 
were analytical grade and commercially available. 

2.2 Bacterial Strain and Growth Condition  

Rhodococcus erythropolis R1 (NCBI GenBank 
Accession No. GU570564) was used in desulfurization 
experiments. This strain, which has a high capability in 
the conversion of DBT to 2-HBP, was previously 

isolated from an oil-contaminated soil sample [8]. It was 
cultured in basal salt medium (BSM) supplemented with 
0.3 mM DBT as the sole sulfur source. Cell cultivation 
was carried out in a 1,000 mL flask containing 200 mL of 
BSM medium on an orbital shaker incubator 
(n-biotech,inc) at 180 rpm and 30 °C. The BSM had the 
following composition: Na2HPO4·7H2O 8 g·L-1, KH2PO4 
4 g·L-1, NH4Cl 2 g·L-1, MgCl2 0.2 g·L-1, FeCl3 0.001 g·L-1, 
CaCl2 0.001 g·L-1, DBT 0.3 mM as sulfur source and 
glucose 15 g·L-1 as carbon source. 

2.3 Preparation of Magnetic Fe3O4 Nanoparticles 

Magnetic Fe3O4 NPs were prepared in two different 
procedures:  

In the procedure 1, magnetic Fe3O4 NPs were 
prepared by Yeh et al. [9] method with a little change. 
Briefly 25 mL of 0.2 M ferrous chloride was mixed 
with 100 mL of 0.1 M ferric chloride solution at 
ambient temperature under nitrogen gas and 
mechanical stirring and then 3 ml of 2 M HCl solution 
was slowly added to make the solution slightly acidic. 
Then 1 g of glycine was added, and afterward, 11 mL 5 
M NaOH solution was added dropwise into the mixture 
to increase its pH to over 10, to provide an alkaline 
environment for Fe3O4 to precipitate. Next, an 
additional 3 g of glycine was added, and the mixture 
stirred for 15 min and then sonicated for 30 min. 
Finally, 5 mL acetone solution was added and agitated. 
The Fe3O4 NPs were separated with a magnetic field 
and the supernatant discarded by decantation. The 
precipitate was washed several times and resuspended 
in deionized water. 

In the procedure 2, the oleate-modified Fe3O4 NPs 
were synthesized using the protocol described by Liu et 
al. [10]. Briefly, 6.76 g of ferric chloride and 2.73 g of 
ferrous chloride were dissolved in 100 mL deionized 
water under nitrogen gas with mechanical stirring. The 
solution temperature was set at 85 °C. Then, 16 mL  
25% wt. NH3.H2O was added and afterward 4 mL of 
oleic acid was dripped into the suspension by a syringe. 
The reaction was kept at 85-90 °C for 30 min. The 
Fe3O4 precipitates were separated using a magnetic 
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decantation and washed several times with deionized 
water. Hydrophilic magnetic NPs were obtained by 
modification of magnetic precipitate with 7.1 M of 
NH3.H2O to pH 8-9 which were mono-disperse in 
aqueous solution. 

2.4 Nanoparticles Characterization 

Two different produced NPs were characterized and 
the better NPs were chosen to be used in 
immobilization of bacterial cells.  

Transmission electron microscopy (TEM) (model 
EM 280, Philips, Germany) was used for morphology 
studying of the NPs. In order to preparation of TEM 
samples, the NPs solutions were sonicated for 5 min to 
better disperse. A drop of each sample was placed with 
a carbon-coated copper TEM grid (200-300 mesh) and 
kept at room temperature to dry and then, imaging was 
done [11].  

Powder X-ray diffraction (XRD) study was used to 
determination the presence of Fe3O4 nano crystals and 
performed between 20° and 80° with a copper X-ray 
source on a Bruker instrument (Germany). 

In order to study the binding of NPs on the cell 
surface, immobilization by both produced NPs was 
done using the procedure described in the next section. 
Afterward, immobilized cells were harvested by a 
magnetic field. Remained cells in the supernatant were 
counted by colony plate count on nutrient agar and 
considered as not absorbed cells (colony count of 
non-immobilized cells was done as a positive control).  

2.5 Immobilization of Cells by Nanomagnetic Fe3O4 

A volume of 40 ml of the bacterial cell culture at the 
late exponential phase (5 g·DCW·L-1) was transferred 
into 100 mL Erlenmeyer flask and then, 1.5 mL of   
30 g·L-1 magnetic suspension was added and mixed 
thoroughly [12]. After absorption of the magnetic NPs 
on the cell surface, a permanent magnet was placed at 
the side of the vessel. The supernatant was decanted 
and immobilized cells were washed and suspended in 
fresh BSM.  

2.6 Batch Biodesulfurization of DBT in Model Oil 

The biphasic media was consisted of BSM (aqueous 
phase) and n-tetradecane (organic phase) in a 2:1 ratio 
and DBT as the sulfur source. The BSM medium as 
aqueous phase helps the generation of the necessary 
cofactors in 4S pathway such as FMN and NADH, and 
aids the cells to survive. The BDS experiments were 
carried out in 100 mL flasks at 30 °C on an orbital 
shaker at 180 rpm (n-biotech, inc). The incubation time 
of DBT utilization and 2-HBP production was 20 h. In 
order to investigate the effect of nanomagnet 
immobilization on DBT BDS, an equal amount of 
immobilized and non-immobilized cells were added to 
biphasic media separately and their 2-HBP production 
was measured after 20 h.  

2.7 Statistical Design of Experiments 

Response Surface Methodology has been generally 
adopted to optimize the design variables in a timely 
manner and at lower costs. It can be used to manage the 
system by a set of factors at different levels and 
facilitates identifying the influence of individual 
factors, the relationship between them and finally 
establishing the performance at the optimum levels 
obtained by a few selected experimental sets [13]. DBT 
concentration (X1), temperature (X2) and pH (X3) were 
regarded as the important factors in BDS activity of 
immobilized cells. A 3-factor and 3-level 
Box-Behnken design (BBD) based on RSM 
methodology was applied to determine the optimum 
level of variables and to study their relationship. The 
factors and their levels are shown in Table 1. 

All factors at middle (0) level constitute the central 
points while combination of factors consisting of one at 
its lowest (-1) level or highest (+1) level. A total of 15 
experimental runs of three factors in different 
combinations were carried out in duplicate and the 
observed results are shown in Table 2. All 
experimental design and data analysis were performed 
using the Design Expert software version 8.0.1. 
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Table 1  Coded values of experimental variables in 
immobilized cells.  

Independent variables -1 0 +1 
X1: DBT concentration (mM) 2 6 10 
X2: Temperature (°C)  20 30 40 
X3: pH 5 7 9 

 
Table 2  Response surface Box-Behnken design (BBD) for 
immobilized cells.  
Run X1 X2 X3 2-HBP (mM) 
1 0 +1 +1 0.55 
2 +1 0 -1 0.76 
3 0 -1 -1 0.66 
4 +1 +1 0 0.65 
5 +1 -1 0 0.67 
6 +1 0 +1 0.73 
7 -1 0 +1 0.60 
8 0 0 0 0.98 
9 -1 -1 0 0.58 
10 0 +1 -1 0.59 
11 0 0 0 0.92 
12 -1 0 -1 0.62 
13 0 0 0 0.97 
14 0 -1 +1 0.59 
15 -1 +1 0 0.43 

 

2.8 Analytical Methods  

High-performance liquid chromatography (HPLC) 
was used to quantitatively assay the DBT (retention 
time = 5.29 min) and 2-HBP (retention time = 3.16 min) 

in n-tetradecane phase. HPLC was performed on a 
KNAUER advanced scientific instruments (Germany) 
equipped with an MZ-analysentechnic C18 column  
(5 µ-250 mm) and a UV detector (Smartline 2600) set 
at 254 nm. The mobile phase was a solution of 
methanol-water (90:10, v/v) with a flow rate of     
1.5 mL·min-1. 

3. Results and Discussion 

3.1 Nanoparticle Characterization 

The Fe3O4 NPs were stable in distilled water and the 
magnetic fluid did not settle after 5 months of storage 
at room temperature. The obtained TEM images 
showed that both produced NPs had approximately 
spherical morphology and were in the range of 5-10 nm 
(Fig. 1). The large particles cannot well be binding to 
the cell surface and therefore, smaller NPs are of 
interest. In addition, the magnetic NPs should be 
smaller than the critical magnetic domain size (around 
50 nm) to be superparamagnetic [14]. 

The XRD patterns of the two produced NPs are 
shown in Fig. 2 and indicated the presence of 
predominantly Fe3O4 crystals. The intensity of NPs 
produced by procedure 1 was obtained 55 (Fig. 2a) and 
for sample prepared by procedure 2 was 90 (Fig. 2b). 

 

  
Fig. 1  Transmission electron microscopy image of magnetic Fe3O4 nanoparticles. Nanoparticles produced by (A) procedure 1 
and (B) by procedure 2.  
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Sample Identification 

Line color Compound Name Formula 
Red Magnetite, Syn FeFe2O4 

 

 
Sample Identification 

Line color Compound Name Formula 
Red Magnetite, Syn FeFe2O4 

Fig. 2  The XRD pattern of the two produced nanoparticles. Nanoparticles produced by procedure 1 (A) and by procedure 2 
(B).  
 

Colony count analysis showed that in cell 
immobilization using NPs produced by procedure 1, 
only 78% of the cells had absorbed NPs while in 
immobilization using NPs produced by procedure 2,  
94% of the cells were decorated by NPs and separated 
by magnetic field. The high surface energy and larger 
specific surface area of the Fe3O4 NPs make it strongly 

adsorbed on the surfaces of microbial cells. But, in 
oleate-modified NPs, the hydrophobic interaction 
between the cell membrane and the hydrophobic tail of 
oleate plays another important role in cell adsorption 
[12]. Therefore, due to better absorption, NPs produced 
by procedure 2 were used for immobilization of 
bacterial cells and BDS of DBT in model oil. 
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3.2 Statistical Analysis  

The variables interaction can be simultaneously 
investigated by response surface model. A quadratic 
polynomial equation was established to recognize the 
relationship between 2-HBP production of 
immobilized cells and variables based on the 
experimental results of BBD (Table 2). The model of 
coded units is calculated using:  

ܻ ൌ ଴ߚ ൅ ෍ ௜ߚ ௜ܺ 

ଷ

௜ୀଵ

൅ ෍ ௜௜ߚ ௜ܺ
ଶ

ଷ

௜ୀଵ

൅  ෍ ෍ ௜௝ߚ ௜ܺ

ଷ

௝ୀଵାଵ

ଶ

௜ୀଵ
௝ܺ 

where, ܻ is the predicted response, ௜ܺ is the variable 
଴ߚ  is constant, ߚ௜  is the linear effect, ߚ௜௜  is the 
quadratic effect, and ߚ௜௝ is the interaction effect. 

In this experiment, model of coded units after 
removing non significant parameters can be expressed 
as: 

ܻ = 1.97 – 0.19X1 + 0.12X2  
        – 0.063X1X2 – 0.40X1

2 – 0.41X2
2 

where, ܻ  is the response value (mM), X1 is DBT 
concentration (mM), X2 is temperature (˚C) and X3 is 
pH. Positive and negative sign before terms indicates 
synergistic and antagonistic effect respectively [15].  

The equation indicates a quadratic linear relationship 
between variables and 2-HBP. The effects of factors 
levels on the BDS efficiency were determined 
employing analysis of variance (ANOVA) and the 
statistically significant factors were distinguished for 
(P value < 0.05). The Model F-value was obtained 
62.06 that implied the model was significant and there 
was only a 0.01% chance that a Model F-value this 
large could occur due to noise (Table 3). Values of 
Prob > F (P value) less than 0.05 indicate model terms 
are significant. In this case X1, X2, X1X2, X1

2, X2
2 and 

X3
2 are significant model terms. The Lack of Fit 

F-value of 0.35 implies the Lack of Fit is not significant 
relative to the pure error, which indicates the model is 
good. There is a 79.53% chance that a Lack of Fit 
F-value this large could occur due to noise. The 
R-Squared (R2) is 0.9911 and (Adj R2) is 0.9752 
indicate the model is significant. The Pred R-Squared 
was 0.9377, which was reasonable agreement with the 

Adj R-Squared. Adeq Precision measures the signal to 
noise ratio. A ratio greater than 4 is desirable. Our ratio 
was 43.31 that indicate an adequate signal. According 
to the present model, DBT concentration, temperature 
and interaction between them were significant but, pH 
and its interaction with other factors were not 
statistically significant. This model can be used to 
navigate the design space. 

3.3 Biodesulfurization Analysis 

The response surface and its contour plot at the base 
can represent the regression model developed to 
investigate the interaction between factors and specify 
the optimum level of each factor. The interaction of 
two independent factors can be shown by each 
response surface with a contour plot while another 
factor is fixed at the level of zero. The fitted surface 
and contour plots between DBT concentration and 
temperature, DBT concentration and pH, temperature 
and pH are presented in Fig. 3. The highest 2-HBP 
production was obtained when all factors were at the 
middle level (Table 2). 

Li et al. [12] showed that coated and non-coated R. 
erythropolis LSSE8-1 cells had the same desulfurizing 
activity but, Ansari et al. [11] reported that decorated R. 
erythropolis IGST8 cells with nanomagnet particles 
had a 56% higher DBT desulfurization activity in basic 
 

Table 3  Analysis of variance (ANOVA).  
Source of 
variance df Mean square F value P value 

Model 9 0.039 62.06 0.0001 
significant 

X1 1 0.042 66.39 0.0005 
X2 1 9.800E-003 15.47 0.0110 
X3 1 3.200E-003 5.05 0.0745 
X1X2 1 4.225E-003 6.67 0.0493 
X1X3 1 2.500E-005 0.039 0.8503 
X2X3 1 2.250E-004 0.36 0.5771 
X1

2 1 0.080 126.12 <0.0001 
X2

2 1 0.19 300.63 <0.0001 
X3

2 1 0.064 101.71 0.0002 
Residual 5 6.333E-004   

Lack of Fit 3 3.667E-004 0.35 0.7953 not 
significant 

Pure error 2 1.033E-003   
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controls the bacterial activity. In addition, enzymes are 
affected by changes in pH that can alter the 3-D shape 
of enzymes. Changes in pH may not only affect the 
shape of an enzyme but it may also change in shape or 
charge properties of the substrate so that the substrate 
cannot bind to the active site or it cannot undergo 
catalysis [21]. Fig. 3C shows the surface and contour 
plots of pH effect on 2-HBP production of immobilized 
cells. As can be seen, the optimum pH was 6.84 and by 
a change in pH, 2-HBP production was reduced. 
Therefore, the reaction can be performed at the 
ordinary condition. 

4. Conclusions 

BDS using nanomagnetic Fe3O4 
particles-immobilized R. erythropolis R1 in a biphasic 
system can be improved by setting significant factors at 
the optimum level. Also the immobilized cells could be 
recovered by magnetic power to prevent the oil 
contamination and use the biocatalyst repeatedly. 
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