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Abstract: When the population, from which the samples are extracted, is not normally distributed, or if the sample size is 
particularly reduced, become preferable the use of not parametric statistic test. An alternative to the normal model is the permutation 
or randomization model. The permutation model is nonparametric because no formal assumptions are made about the population 
parameters of the reference distribution, i.e., the distribution to which an obtained result is compared to determine its probability 
when the null hypothesis is true. Typically the reference distribution is a sampling distribution for parametric tests and a permutation 
distribution for many nonparametric tests. Within the regression models, it is possible to use the permutation tests, considering their 
ownerships of optimality, especially in the multivariate context and the normal distribution of the response variables is not 
guaranteed. In the literature there are numerous permutation tests applicable to the estimation of the regression models. The purpose 
of this study is to examine different kinds of permutation tests applied to linear models, focused our attention on the specific test 
statistic on which they are based. In this paper we focused our attention on permutation test of the independent variables, proposed by 
Oja, and other methods to effect the inference in non parametric way, in a regression model. Moreover, we show the recent advances 
in this context and try to compare them. 
 
Key words: Permutation Tests, Linear Regression Models, Non Parametric Approach.  
 

1. Permutation Tests in Regression Models  

In many cases, when within the regression models 
the classical condition are not respected, it’s possible 
to use the permutation tests, considering their 
ownerships of optimality, especially in the 
multivariate context (Shadrokh and d’Aubigny, 2010; 
Shadrokh, 2011). The evaluation of the parameters 
significance is an inferential procedure, based on 
randomization tests (if the same experimental plan 
justifies them) or permutation tests (if the observed 
samples are random, so that the analyzed samples 
justify the calculations) (Kempthorne and Doerfler, 
1969). In permutation tests, the reference distribution 
against which the statistic is tested is obtained by 
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randomly permuting the data under study, without 
reference to any statistical population. The test is valid 
as long as the reference distribution has been 
generated by a procedure related to a null hypothesis 
that makes sense for the problem at hand, irrespective 
of whether or not the data set is representative of a 
larger statistical population. This is the reason why the 
data do not have to be a random sample from some 
larger statistical population. The only information the 
permutation test provides is whether the pattern 
observed in the data is likely, or not, to have arisen by 
chance. For this reason, one may think that 
permutation tests are not as good or interesting as 
classical tests of significance because they might not 
allow one to infer conclusions that apply to a 
statistical population. 

Permutation tests provide a promising approach to 
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testing hypotheses in a variety of data structures. 
According to Good (1994), permutation tests are 
among the most powerful of statistical procedures 
available, offering robust alternatives in the face of 
violations of the assumptions of traditional parametric 
tests. Through the use of the permutation tests, we 
assess the null hypothesis of casualness: in fact, it 
suggests that, if the examined phenomenon has a 
certain tendency, confirmed by a model that appears 
as gives, it is a purely accidental effect of the 
observations in casual order (Hogarty and Kromrey, 
2003). The alternative hypothesis of the test, however, 
states that the inferential model, at the base of the 
studied phenomenon, it is not the result of chance. 
Performing the randomization test is a way to 
determine if the null hypothesis is reasonable in this 
situation. We proceed choosing an useful S statistic 
test to measure the entity of the phenomenon of 
interest in relationship to the observed data and we 
compare the observed s statistic test value of S and the 
distribution of S, obtained casually rearranging the 
data. The test founds on the following principle: if the 
null hypothesis were true, then all the possible 
arrangements of the observations would have equal 
probability to verify, that is the order of the observed 
data is one of the possible equally probable 
arrangements and s appears as one of the possible 
values of the randomization distribution of S. If s is 
significant value, that is the null hypothesis has not 
confirmed by test, then, for implication, the alternative 
hypothesis is considered more reasonable. The 
significance level of s is, therefore, the percentage of 
the values that are great or equal to s in the 
randomization distribution. It represents a measure of 
evidence strength against the null hypothesis.   

The purpose of this study is to examine different 
kinds of permutation tests applied to linear models, 
focused our attention on the specific test statistic on 
which they are based. In particular we focused our 
attention on permutation test of the independent 
variables, proposed by Oja, and other methods to 

effect the inference in non parametric way. Moreover, 
we show the main advances in this context and try to 
compare them. The paper is so structured: 
 in section 2 we describe the Oja permutation test 

and its reformulations proposed by other authors;  
 in section 3 the Ter Braak residual permutation 

test of the complete model is presented with its 
appreciable properties;  
 in section 4 three kinds of residual permutation 

tests of the reduced models are introduced 
(respectively Friedman and Lane test, Kennedy test 
and Manly test);  
 in section 5 the permutation test of the dependent 

variable approach is examined, including three 
possible reason to justify this type of permutation 
approach (Manly);  
 in section 6 the exact restricted permutation tests 

for partial regression models, proposed by Brown and 
Maritz, is shortly presented.  
 in section 7 we discuss the main characteristics 

of the examined methods and we underline some 
remarks related to the permutation and randomization 
aspects of this paper.  

2. The Oja Permutation Test of the 
Independent Variables  

In the literature, the permutation tests applicable to 
the estimation of regression models are numerous. 
Firstly, we focus our attention on Oja test. The 
experimental plan presented by Oja (1987) considers n 
subjects to which a treatment variable x is assigned in 
order to study their effects on a response variable Y. In 
addition, for each k subject, further Z explanatory 
variables (covariates) are considered. The 
non-parametric permutation tests proposed by Oja are 
relative to a completely permuted plane: in fact, they 
based on the assumption that the treatment values are 
randomly assigned to subjects. Therefore, the 
permutation distribution used to verify the 
significance of a relationship between X and Y, taking 
into account the effects of the Z covariates, is obtained 
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by permuting the X values to the n statistical units. In 
formal terms, this is a regression plan model where 
the results can be generalized to multiple regression. 
The model can be expressed as:  

i i i iY X Zα β γ ε= + + +  

with i=1,...,n, where α , β  and γ  are unknown 
parameters, X is the explicative variable of the plane 

such that 1
0n

ii
X

=
=∑ , Z  is the explanatory 

covariable and i nε ε...  are independent and 
identically distributed random errors with null mean. 
The attention is focused on the β  parameter; 
therefore the null hypothesis is expressed by 

0 0H β: =  and α  and γ  are nuisance 
parameters. Let’s suppose that Y , X  and Z  are 
given for all i : the X  variable is considered as a 
realization of the random permutation x∗  of x . 
Then, the corresponding y  values, which have not 

been realized, are ( )y y x xβ∗ ∗= + − , from which 
we can easily obtain y x y xβ β∗ ∗− = − . The test 
statistic proposed by OJA to assess the null hypothesis 
is:  

y x
ijk ijk

i j k
T

∗

< <

= ∆ ∆∑              (1) 

where  

1 1 1
y
ijk i j k

i j k

y y y
z z z

∆ =             (2) 

with i j k< <  and similarly for x
ijk

∗

∆ . This statistic 

is not easy from the computational point of view; so, 
Oja proposed an alternative form of this test in order 
to facilitate the calculations:  

ˆ ii
i

T xy ∗= ∑               (3) 

where ˆ y z
ijk jki j k

y δ
<

= ∆∑  with  

1 1z
jk

j kz z
∆ =                (4) 

with j < k. Before Oja and then Collins (1987) tried to 

approximate the permutation distributions of test 
statistics proposed by them, with other distributions. 
In particular Oja has suggested a standardized normal 
approximation or, equivalently, to square the test 
statistic proposal and compare the result with the 
critical value of a 2

1χ . Of course there is no certainty 
that these distributions provide adequate 
approximation to the corresponding distributions of 
permutation. Collins (1987) has proposed, in his work, 
a reformulation of the Oja statistics, to use easier 
methods of calculation, to obtain the explicit formulas 
of the moments of permutation and especially to have 
the advantage of being able to recognize a beta 
distribution as an approximation of the exact 
distribution of null permutation. These procedures 
presented by Oja and Collins have not had much 
success and development because, by permuting the 
independent variables, they violate the principle of 
ancillarity according to which the Plan should be 
subject to maintain the collinearity between the 
explanatory variables (Kennedy, 1995). To overcome 
this drawback Kennedy and Cade (1996) argue that 
the use of an asymptotically pivotal statistic (such as t 
or F statistics) should prevent the violation of this 
principle and thus the degree of collinearity of the 
independent variables should not affect However, 
neither Collins nor Oja using pivotal test statistics. 
Circumventing the problem, they are limited to 
randomly assign the values of the explanatory 
variables x  and z , and this leads to the variables to 
be "close" to the orthogonality. Moreover also Manly 
(1991) critiques the permutation procedure of the 
observations, arguing that it is not appropriate for 
testing the effect of one or more independent variables, 
given that the other explanatory variables may or may 
not have an effect on the dependent variable.  

3. The Residual Permutation Test of the 
Complete Model  

There are other methods to effect the inference in 
non parametric way, in a regression model. The 
residual permutation test of the complete model, 
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proposed by Ter Braak (1992), is based on 
permutation of residuals of the full model. The test 
statistic under permutation for this method is:  

2
2

2 2

( ( ) )

( )
Y XZ Z X

T

Y XZ Z X

R k X R
r

R k X R

π
π

π
π

| |

| |

−
=

−

∑
∑ ∑

      (1) 

where 2
Y XZk R X Xπ

π |= /∑ ∑  and Y XZRπ
|  are the 

permuted least-squares residuals of the full model. 
Permutation test proposed by Ter Braak is analogous 
to a bootstrap test and it consists of permuting the 
residual samples of a multiple regression in order to 
produce a distribution that can be compared with the 
value sample of a statistic test. In effects, this test is 
not a permutation test in traditional sense, because the 
data are transformed for getting the residues, before 
their exchange happens. Moreover, it is hybrid 
between a permutation test and a bootstrap test and its 
justification can be derive from both value b∗  
around the true b  value in the bootstrap samples. 
Similarly the variability of obsF  to test 0β β=  are 
similar to the variability of F ∗  to test bβ = . 
These appreciable properties are also justified because 
the F used statistic test is asymptotically pivotal; 
whatever is the errors distribution, the F  asymptotic 
distribution doesn’t depend on the parameters in the 
model. This test is well applicable with great samples 
because the variability of b  around the truth β  is 
similar to the variability of the resampled parameters 
that are not tested (Levin and Robbins, 1983; Gail, 
Tan and Piantadosi, 1988; Kennedy and Cade, 1996). 
These valuable properties are also justified by the fact 
that the test statistic F  used is asymptotically 
pivotal, that whatever the distribution of errors, the 
asymptotic distribution of F  does not depend on the 
parameters of the model.  

4. The Residual Permutation Test of the 
Reduced Model  

In the residual permutation test of the reduced 
model, the effects of one or more explanatory 

independent X  variables are tested, permuting the 
residuals of the regression equation of the reduced 
model, that contains only the other explanatory Z  
variables that are not tested (Levin e Robbins, 1983; 
Gail, Tan and Piantadosi, 1988). The permutation test 
is performed comparing the F  sampling test statistic 
with the distribution that is gotten permuting residuals 
of y  calculated in precedence. Such procedure is 
appropriate only when the X  variables are 
incorrelated with the other explanatory variables Z  
used for calculating the residuals. The first 
approximate test is that provided by Friedman and 
Lane (1983); this method is similar to the exact test, 
except that ε  and α  are replaced by their 
least-squares estimates Y XR |  and a , respectively. 

The statistic under permutation is:  
2
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where 2
( ) ( )F Fa Y X Xπ π= /∑ ∑ .  

Successively, Kennedy (1995) proposed another 
method of permutation, based on the general idea that 
the partial regression coefficient is equivalent to the 
simple regression coefficient of residuals. The test 
statistic under permutation is the correlation 
coefficient between Y XRπ

|  and Z XR |  , expressed as:  
2

2

2 2
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K

Y X Z X
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π
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            (2) 

The values 2
Kr  and 2

Fr  are different under 
permutation although the two examined methods 
permute residuals Y XR | . Also Mainly (1997) 
proposed a method, based on permuting observed Y
values for the test of partial correlation. The test 
statistic under permutation is the following:  
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5. The Permutation Test of the Dependent 
Variable 

This test is used to verify the null hypothesis 

0 0H β: = . It can be performed comparing the 
values of the F  test statistic with the distribution 
obtained permuting the Y  observations, to casually 
assign to the sets of the observations of X  and Z  
independent variables. Manly (1991) proposes three 
possible motives to justify this type of permutation 
approach: in first place, the n  observations can be a 
casual sample from a population of possible 
observations, where the Y  variable could be 
independent from the X  and Z  explanatory 
variables; in according to place, the values of the 
experimental variables X  and Z  can casually be 
assigned to n  statistical units and, therefore, the 
values of the Y  response variable can be observed 
(Y  would not to be influenced by the X  and Z  
variables) besides, if the variable Y  and the 
explanatory variables X  and Z  are independent, 
all the possible joining among every value Y  and 
every values X  and Z  are equally probable in 
relationship to a potential mechanism that generates 
the data.  

6. The Exact Restricted Permutation Tests 
for Partial Regression Models  

Problems involving complex relationships among 
variables may require permuting the residuals of some 
model instead of the raw data. The effect of a nominal 
covariable may be controlled for by restricted 
permutations, limited to the objects within the groups 
defined by the covariable. This method is discussed in 
detail by Manly (1991). Applications are found in 
Brown and Maritz (1982), that furnish an exact 
permutation for test of a partial regression model, 
within the regression plain. The proposed scheme, 
united to a suitable experimental plan, is used for the 
inference on the regression coefficient β  of X , 
when exists another explanatory Z  variable that 
influences the Y  response. The X  coefficient is 

therefore a disturb parameter.  

7. Final Remarks  

In this paper we revisited the use of permutation 
test to evaluate the inference in nonparametric way, in 
a regression model. The permutation strategy involves 
a comparison of the observed test statistic (e.g., 
differences in class mean effect sizes or estimated 
regression weights) with the set of values obtained 
through rearranging the data. The rearrangements of 
the data are repeated until a distribution is obtained for 
all possible permutations (an exact permutation test) 
or for a large, random sample of the permutations (an 
approximate permutation test). This distribution of test 
statistics obtained from the permutations of the 
observed data provides an empirical sampling 
distribution within which the observed test statistic 
may be compared. Comparing the randomization and 
permutation tests with the conventional test for 
inference in a regression model, we can underline 
some aspects. First of all, the randomization and 
permutation tests have two important advantages: they 
are also valid and opportunely applicable without 
casual samples and they allow to select a statistic test 
appropriated for a particular considered situation. 
Nevertheless, it’s not possible to generalize the 
conclusions of a randomization test to the whole 
population of interest. In fact a randomization test 
identify the probability that a phenomenon of interest 
is casual. The concept of population from which to 
extract samples of observations is not fundamental 
and this is the reason for which for the casual 
sampling is not required. From other hand, the 
generalization of results of the conventional tests to 
the whole population is based on the assumption, not 
always verifiable, that the observed samples is 
equivalent to a casual sample or that the data are 
available for the whole population of interest (but this 
last condition is practically unrealizable).  

Oja’s permutation test permutes predictors. The 
author presents some distribution-free tests applicable 
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in presence of covariates, when treatment values are 
randomly assigned. The formulas and calculations are, 
however, cumbersome, and implementation of the test 
relies on using a 2χ  approssimation to the exact null 
distribution. Oja discussed the permutation 
distribution of test statistics when the permute-Z 
method was used; successively, Collins proposed 
fitting a Beta distribution to the permutation 
distribution in order to perform the test. With 
reference to the alternative approaches of permutation 
tests in regression, we examine four kind of 
permutation tests, in which the test statistics is 
differently obtained.  

The permutation distribution suggested by 
Freedman and Lane is constructed by permuting the 
residuals and adding them to the predicted values to 
construct a new set of y variables these y values may 
be regressed on x to obtain another set of residuals that 
are unique to this permutation of the data. In this way 
the residuals and the squared partial correlation 
coefficient for this permutation are obtained. The 
residuals involving z and x have not changed in the 
permutation, because their values are constant across 
the set of permutations. 

The permutation distribution suggested by Kennedy 
is also constructed by permuting the residuals, but 
they are not recombined with the original predicted 
values. Rather, these permuted residuals are entered 
directly in the calculation of the squared partial 
correlation. The only value that will change across 
permutations is the numerator of this formula, because 
each permutation will result in new pairings of the two 
residuals, while the sum of the squared residuals 
remains constant.  

Manly suggested that the original observed y values 
may be permuted, and the regression of these 
permuted y values on x may be obtained, providing 
residuals residuals, which will be unique for each 
permutation of the y vector and are used to compute 
the partial correlation.  

Ter Braak suggested a permutation distribution that 

is similar to the Freedman and Lane approach, except 
that the residuals being permuted are obtained from 
regressing y on both z and x simultaneously (called the 
full model residuals). For a given sample of observed 
values of y, z and x, the observed values of y are 
regressed on x and z simultaneously to obtain the 
residuals. The permutation distribution suggested by 
Ter Braak is constructed by permuting these residuals, 
then regressing them on x to obtain another set of 
residuals that are unique to this permutation of the 
data. In all four methods, the observed value of the 
squared partial correlation is used as the test statistic, 
but the methods yield different permutation 
distributions against which this value is evaluated to 
obtain a probability statement.  

Manly observes that if all slope parameters, in a 
regression model, are tested simultaneously against a 
reduced parameter model that includes only the 
intercept, then the reference permutation distribution 
for the test statistic is obtained by randomly sampling 
the n! permutations of the dependent variable to the 
matrix of independent variables and calculating the 
test statistic for each permutation.   

Concluding our overview we cite Brown and Maritz; 
they propose a restricted permutation in the context of 
multiple regression, where predictor variables take 
several fixed repeated values. 

We have also demonstrated that the critical values 
for all this permutation and randomization tests 
converge to the same constant under sequencies of 
contiguous alternative hypotheses. So they all have 
the same asymptotic power. Anderson and Legrende 
(1999) considering empirical studies show that 
Friedman and Lane (1983) method generally gives the 
best results (in terms of type one error or power) and 
the theoretical results here demonstrate why this is so. 
So, randomization and permutation tests represent a 
methodologically adequate solution in a large number 
of practise experimental contexts in which the samples 
are not random and it’s necessary a statistic test 
appropriated for a particular condition, alternatively to 
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conventional tests whose assumptions are too 
restricted. In addition we underline that these results 
have special relevance for the of multivariate data (i.e 
multiple response variables). For univariate analysis 
the normal theory tests are fairly robust and in 
situations where this is in doubt, appropriate 
trasformations of the raw data can usually be found. In 
the opposite, multivariate tests are not so robust to 
departures from nonnormality, and permutation and 
randomization tests are very used for nonparametric 
analysis of multivariate data particularly in the 
biological and ecological sciences especially for tests 
based on distances matrices.  
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