![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Grand Gravity and X-Theory. On the Unification of Relativity and Quantum Mechanics
Manuel A. B. Bache
Full-Text PDF
XML 1297 Views
DOI:https://doi.org/10.17265/2161-623X/2023.02.001
1“Francisco Maldonado” Public University College, U. of Sevilla. 41640, Osuna (Sevilla), Spain. 2University of Sevilla, 41013, Sevilla, Spain
Einstein’s Relativity placed speed of light as a constant and unreachable speed c and since its publication, no absolute reference can be found in space, appearing the concept of spacetime. However, Einstein blurred some questions about the postulates of Relativity. Then quantum mechanics appeared, and Einstein was reluctant to accept it. That may be due to that, even though Relativity postulates and axioms are well established, they could rely on empirical assumptions. Einstein tried and failed, to make some of them constant (he called one “his biggest blunder”). Based on that, Wigner’s, Böhr’s, Gödel’s, Bohm’s, Schrödinger’s, and EPR’s observations, we found that those empirical assumptions were founded in axioms that might be as correct as wrong. Whether correct or wrong, the aforementioned axioms are unparalleled to nature, and we found that for our theory to be proven and correct (as well as almost any other theory) a specific mathematical model ought to be devised to match it specifically, yet for any process in nature it depends on the very interaction of physical laws. So an outright computation would define “reality” yet not nature or the process of formation, and the mathematical model usually is only relevant to the specific and beforehand determined query, under the system of mathematics used, being not possible to prove when the answers are beyond the mathematical system itself, in accordance with Gödel’s and Wigner’s caveats. Following those forewarnings, we found that another possibility can be contemplated regarding the universe, and, in those terms, and following Mach’s principle which even Einstein took into account, quantum mechanics and Relativity unification could be possible. Since, physics in nature, and the physical properties of the physical world do apply and work regardless the existence of mathematics, and the definition of the physical world (and its measurement), we set a paradigm in which the aforementioned unification could be possible. To our surprise that paradigm and the model excogitated from the X-Theory, worked better and was more relevant than current accepted Big Bang models, to our universe and our physical world (even in quantum terms) allowing to explain the early universe, its expansion, the multiverse interpretation, and possibly, the quantization of gravity.
EPR paradox, universe, theoretical physics, Hilbert Space, X-Theory, Theory of Everything (ToE), cosmology
Manuel A. B. Bache. (2023). Grand Gravity and X-Theory. On the Unification of Relativity and Quantum Mechanics. US-China Education Review A, Mar.-Apr. 2023, Vol. 13, No. 2, 60-74. https://doi.org/10.17265/2161-623X/2023.02.001
Abbott, A. (1988). Transcending general linear reality. Sociological Theory, 6(2), 169-186. doi:10.2307/202114
Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Phys.Rev.Lett., 49(25), 1804-1807. doi:10.1103/PhysRevLett.49.1804
Bache, M. A. B. (26/06/2021a). On the origins of the universe, an exacting mathematical verification. Spanish Government Intellectual Property Registry, Scientific Works. Registry entry 04/2021/4284.
Bache, M. A. B. (26/06/2021b). Teoría X. Versión en Castellano de Sobre los orígenes del Universo, una comprobación meticulosa desde un punto de vista matemático. Spanish Government Intellectual Property Registry, Scientific Works. Registry entry 04/2021/5277.
Bache, M. A. B. (26/08/2022a). On the origins of the universe. Complete work. Spanish Government Intellectual Property Registry, Scientific Works. Registry entry 04/2022/3516.
Bache, M. A. B. (11/12/2022b). The final key. On the emergence of the universal gravity, and the generation of the gravitational fields. Proposal of the mathematical definition of U, its wave and processes. Spanish Government Intellectual Property Registry, Scientific Works. Registry entry 04/2023/579.
Bache, M. A. B. (2023). On the origins of the universe. An exacting mathematical verification in the 5th dimension. Spanish Government Intellectual Property Registry, Scientific Works. Preprint (Research Square).
Bache, M. A. B., Rodríguez Sánchez, A. R., & Ries, F. (09/11/2022). Explicación de la Disonancia Cognitiva y el Aprendizaje Significativo de Ausubel (1963) desde el punto de vista físico de la Teoría X y las Neurociencias. In M. Puig Gutiérrez, A. J. García González, and A. Palacios Rodríguez (Eds.), VIII Jornadas de Innovación Docente, Línea 3 Investigación en Innovación Educativa (pp. 132-140). Universidad de Sevilla.
Barbour, J. B., & Pfister, H. (Eds.). (1995). Mach’s principle: From Newton’s bucket to quantum gravity (Vol. 6). Basel: Birkhäuser.
Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195-200. doi:10.1103/PhysicsPhysiqueFizika.1.195
Bell, J. S. (1976). The theory of local beables. Contribution to 6th Gift Seminar on Theoretical Physics: Quantum Field Theory, Dialectica, 39, 86-96 (1985). Retrieved from http://cds.cern.ch/record/609719
Bell, J. S. (1981). Bertlmann’s socks and the nature of reality. Journal de Physique Colloques, 42(C2), 41-62. doi:10.1051/jphyscol:1981202
Bell, J. S, Clauser, J. F, Horne, M. A., & Shimony, A. (1985). An exchange on local beables. Dialectica, 39, 85-96. doi:10.1111/j.1746-8361.1985.tb01249.x
Born, M. (1926). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37(12), 863-867. doi:10.1007/BF01397477
Born, J., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik, 389(20), 457-484. doi:10.1002/andp.19273892002
Böhr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 48, 696-702. doi:10.1103/PhysRev.48.696
Bohm, D. (1951). Quantum theory. New York: Prentice Hall.
Bondi, H., & Samuel, J. (1997). The Lense-Thirring effect and Mach’s principle. Physics Letters A, 228(3), 121-126.
Brans, C., & Dicke, R. H. (1961). Mach’s principle and a relativistic theory of gravitation. Physical Review, 124(3), 925-935.
Braeck, S., & Grøn, Ø. (2013). A river model of space. The European Physical Journal Plus, 128, 1-18.
Buse, R. P., & Weimer, W. (2009, May). The road not taken: Estimating path execution frequency statically. In 2009 IEEE 31st International Conference on Software Engineering (pp. 144-154). IEEE.
Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden variable theories. Phys.Rev.Lett., 23, 880-884. doi:10.1103/PhysRevLett.23.880
Cantor, G. (1874). Uebereine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. Journal für die reine und angewandte Mathematik, 77, 258-262.
Cantor, G. (1878). Ein beitrag zur mannigfaltigkeitslehre. Journal für die reine und angewandte Mathematik (Crelles Journal), 84, 242-258. doi:10.1515/crelle-1878-18788413
Cantor, G. (1883). Ueberunendliche, lineare Punktmannichfaltigkeiten. Mathematische Annalen, 21, 545-591. doi:10.1007/BF01446819
Cohen, P. J. (1963). The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences, 50(6), 1143-1148. doi:10.1073/pnas.50.6.1143
Courant, R., & Hilbert, D. (1924). Methoden der mathematischen Physik. New York: Springer.
Einstein, A. (1905). Zür Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921. doi:10.1002/andp.19053221004
Einstein, A. (1913). Letter to Ernst Mach, Zurich, 25 June 1913. In Ch. Misner, K. S. Thorne, and J. A. Wheeler (1973), Gravitation. San Francisco: W. H. Freeman.
Einstein, A. (1915). Zür allgemeinen Relativitätstheorie. Preuss. Akad. Wiss. Berlin, Sitzber, 47, 778-786.
Einstein, A. (1916). Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften Berlin, 1, 688-696.
Einstein, A. (1931). Note from 1919 on his Solar Eclipse prediction. In Cosmic religion, with other opinions and aphorisms. New York: Covici-Friede Inc.
Einstein, A. (1936). Physics and reality. J. Franklin Inst., 221(3), 313-347. doi:10.1016/S0016-0032(36)91047-5
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47(10), 777-780. doi:10.1103/PhysRev.47.777
Flavell, J. H., Green, F. L., & Flavell, E. R. (1985). The road not taken: Understanding the implications of initial uncertainty in evaluating spatial directions. Developmental Psychology, 21(2), 207-216. doi:10.1037/0012-1649.21.2.207
Fraenkel, A. A. (1922). The notion of “definite” and the independence of the axiom of choice. In J. van Heijennort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879-1931 (pp. 284-289). Cambridge, Mass.: Harvard University Press (1967).
Fremerey, J. K. (1973). Significant deviation of rotational decay from theory at a reliability in the 10−12 sec−1 range. Phys. Rev. Lett., 30, 753-757. doi:10.1103/PhysRevLett.30.753
Frost, R. (1915). The road not taken. A group of poems by Robert Frost. The Atlantic Monthly, August 1915.
Gibbs, J. W. (1902). Elementary principles in statistical mechanics: Developed with especial reference to the rational foundations of thermodynamics. New York: Charles Scribner’s Sons.
Gödel, K. (1931). Über formal unentschedibare Sätze der Principia Mathematica und verwandter Systeme, I. Monatsh. Math. Phys., 38, 173-198. doi:10.1007/BF01700692
Gödel, K. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences, 24(12), 556-557. doi:10.1073/pnas.24.12.556
Gödel, K. (1949). An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys., 21(3), 447-450.
Gullstrand, A. (1922). Allgemeine lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv. Mat. Astron. Fys., 16(8), 1-15.
Hamilton, A. J., & Lisle, J. P. (2008). The river model of black holes. American Journal of Physics, 76(6), 519-532.
Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift fur Physik, 43, 172-198.
Hilbert, D., Nordheim, L. W., &von Neumann, J. (1927).Über die Grundlagen der Quantenmechanik. Mathematische Annalen, 98, 1-30. doi:10.1007/BF01451579
Hubble, E. P. (1925). Cepheids in spiral nebulae. Popular Astronomy, 33, 252-255.
Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. P.N.A.S., 15(3), 168-173.
Hock, H., & Orkin, S. H. (2005). The road not taken. Nature, 435(7042), 573-575. doi:10.1038/435573a
Hoyle, F., & Narlikar, J. V. (1963). Mach’s principle and the creation of matter. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 273(1352), 1-11. doi:10.1098/rspa.1963.0072
Kaluza, T. (1921). Zum unitätsproblem in der physik. Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 966-972. doi:10.1142/S0218271818700017
Keith, J. C. (1963). Gravitational radiation and aberrated centripetal force reactions in relativity theory. Rev. Mex. Fís., 12(1), 1-25.
Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik A., 37(12), 895-906. doi:10.1007/BF01397481
Krapf, S., Weber, S., & Koslowski, T. (2012). The road not taken: A theoretical view of an unexpected cryptochrome charge transfer path. Physical Chemistry Chemical Physics, 14(32), 11518-11524. doi:10.1039/C2CP40793K
Lemaître, G. (1927). Un Univers Homogène de Masse Constante et de Rayon Croissant Rendant Compte de la Vitesse Radiale des Nébuleuses Extra-galactiques. Annales de la Societe Scietifique de Bruxelles, 47, 49-59.
Leibniz, G. W. (1714). The monadology. Austria: Vienna.
Mach, E. (1883). The science of mechanics (tr. 1893). Chicago: Open Court Publishing Co.
Minkowski, M. (1909). Raum und Zeit. Jahresbericht der deutschen Mathematiker-Vereinigung, 18, 75-88.
Minkowski, H. (1952). Space and time. In H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl (Eds.), The principle of relativity: A collection of original memoirs on the special and general theory of relativity (pp. 75-91). New York: Dover Publications.
Painlevé, P. (1921). La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris), 173, 677-680.
Pender, R., & Lemieux, D. J. (2020). The road not taken: Building physics, and returning to first principles in sustainable design. Atmosphere, 11(6), 620. doi:10.3390/atmos11060620
Penrose, R. (1965). Gravitational collapse and space-time singularities. Physical Review Letters, 14(3), 57-59. doi:10.1103/PhysRevLett.14.57
Penrose, R. (2020). Nobel Prize lecture on physics and chemistry. In R. Penrose, R., Genzel, and A. Ghez, Black holes and the Milky Way’s darkest secret. The Nobel Prize in Physics 2020. Royal Swedish Academy of Sciences.
Perlmutter, S., Aldering, G., Valle, M. D., Deustua, S., Ellis, R. S., Fabbro, S., … Kim, A. G. (1998). Discovery of a supernova explosion at half the age of the universe. Nature, 391(6662), 51-54.
Russell, B. (1902). Letter to Frege. In J. van Heijenoort (Ed.), From Frege to Gödel(pp. 124-125). Cambridge, Mass.: Harvard University Press (1967).
Russell, B. (1903). Appendix B: The doctrine of types. In B. Russell, The principles of mathematics (pp. 523-528). Cambridge: Cambridge University Press.
Sagan, C. (1980). Cosmos. New York: Random House.
Schrödinger, E. (1935a). Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften, 23(48), 807-812. doi:10.1007/BF01491891
Schrödinger, E. (1935b). Discussion of probability relations between separated systems. Math. Proc. Cambridge Philos. Soc., 31(4), 555-563. doi:10.1017/S0305004100013554
Schmidt, B. P., Suntzeff, N. B., Phillips, M. M., Schommer, R. A., Clocchiatti, A., Kirshner, R. P., …Riess, A. G. (1998). The high-Z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astr. J., 507(1), 46-63.
Schopenhauer, A. (1813). On the fourfold root of the principle of sufficient reason. Illinois: Open Court Classics.
Schwarzschild, K. (1916). Uber das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 7, 189-196.
Sciama, D. W. (1953). On the origin of inertia. Monthly Notices of the Royal Astronomical Society, 113(1), 34-42. doi:10.1093/mnras/113.1.34
‘T Hooft, G. (2001). Obstacles on the way towards the quantisation of space, time and matter—and possible resolutions. Stud. Hist. Philos. Mod. Phys., 32(2), 157-180. doi:10.1016/S1355-2198(01)00008-9
‘T Hooft, G. (2005). The conceptual basis of Quantum Field Theory. Utrecht University Open Access Repository, Utrecht, The Netherlands. Retrieved from https://dspace.library.uu.nl/handle/1874/22670
‘T Hooft, G. (2014). Physics on the boundary between classical and quantum mechanics. J. Phys. Conf. Ser., 504(1), 012003. doi:10.1088/1742-6596/504/1/012003
Vedovato, F., Agnesi, C., Schiavon, M., Dequal, D., Calderaro, L., Tomasin, M., …Villoresi, P. (2017). Extending Wheeler’s delayed-choice experiment to space. Sci. Adv., 3(10), e1701180.
Wheeler, J. A. (1978). The “Past” and the “Delayed-Choice”double-slit experiment. In A. R. Marlow (Ed.), Mathematical foundations of quantum theory (pp. 9-48). New York: Academic Press. doi:10.1016/B978-0-12-473250-6.50006-631
Wheeler, J. A., & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17(2-3), 157-181. doi:10.1103/RevModPhys.17.157
Wheeler, J. A., & Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21(3), 425-433. doi:10.1103/RevModPhys.21.425
Weinberg, S. (1972). Gravitation and cosmology: Principles and applications of the general theory of relativity. New York: Wiley & Sons.
Wigner, E. P. (1990). The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Communications on Pure and Applied Science, 13(1), 1-14. New York: Wiley & Sons.
Yahalom, A. (2013). Gravity and faster than light particles. J. Mod. Phys., 4(10), 1412-1416. doi:10.4236/jmp.2013.410169
Young, T. (1804). The Bakerian lecture. Experiments and calculations relative to physical optics. Philos. Trans. R. Soc. London, 94, 1-16. doi:10.1098/rstl.1804.0001
Zeilinger, A. (1986). Testing Bell’s inequalities with periodic switching. Phys.Lett.A., 118(1), 1-2._ _ doi:10.1016/0375-9601(86)90520-7
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65, 261-281. doi:10.1007%2FBF01449999