Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

The search for efficient methods for the synthesis of metal nanoparticles has been widely explored. Within this context, the use of biological materials such as plants, algae, bacteria and fungi has been reported to various metal nanoparticles as an efficient, low-cost and environmental friendly approach. In this paper we present a single-step method for synthesizing gold nanoparticles, by using essential oils from Brazilian Eucalyptus leaves (urograndis and dunnii). The results strongly suggest that the presence of a stronger bioreducing agent, α-Terpinyl acetate, in the Eucalyptus urograndis, results in higher antioxidant capacity and hence in the synthesis of gold nanoparticles with more controlled size distribution.

KEYWORDS

Nanoparticles, essential oils, biosynthesis.

Cite this paper

References

[1] Brolo, A. G. 2012. “Plasmonics for Future Biosensors.” Nat. Photonics 6: 709-13.

[2] Santos, J. F. L., Santos, M. J. L., Thesing, A., Tavares, F., Griep, J., and Flores, M. R. 2016. “Localized Surface Plasmon Resonance Applied to Biosensors and Solar Cells.” Quim. Nova 39: 1098-111.

[3] El-Refai, A. A., Ghoniem, G. A., El-Khateeb, A. Y., and Hassaan, M. M. 2018. “Eco-Friendly Synthesis of Metal Nanoparticles Using Ginger and Garlic Extracts as Biocompatible Novel Antioxidant and Antimicrobial Agents” J. Nanostructure Chem. 8: 71-81.

[4] Song, J. Y., Jang, H. K., and Kim, B. S. 2009. “Biological Synthesis of Gold Nanoparticles Using Magnolia Kobus and Diopyros Kaki Leaf Extracts.” Process Biochem. 44: 1133-8.

[5] Hou, P., Liu, H., Li, J., and Yang, J. 2015. “One-Pot Synthesis of Noble Metal Nanoparticles with a Core-Shell Construction.” Crys tEng Comm 17: 1826-32.

[6] Roy, N., Laskar, R. A., Sk, I., Kumari, D., Ghosh, T., and Begum, N. A. 2011. “A Detailed Study on the Antioxidant Activity of the Stem Bark of Dalbergia sissoo Roxb., an Indian Medicinal Plant.” Food Chem. 126: 1115-21.

[7] Govaerts, R., Sobral, M., Ashton, P., and Barrie, F. 2008. World Checklist of Myrtaceae. Royal Botanic Gardens United States.

[8] Brooker, M. I. H., and Kleinig, D. A. 2006. Field Guide to Eucalyptus. Melbourne: South-Eastern Australia.

[9] Moon, J. K., and Shibamoto, T. 2009. “Antioxidant Assays for Plant and Food Components.” J. Agric. Food Chem. 57: 1655-66.

[10] Banerjee, J., and Narendhirakannan, R. T. 2011. “Biosynthesis of Silver Nanoparticles from Syzygium cumini (L.) Seed Extract and Evaluation of TH.” Dig. J. Nanomater. Bios. 6: 961-8.

[11] Pham-Huy, L. A., He, H., and Pham-Huy, C. 2008. “Free Radicals, Antioxidants in Disease and Health.” Int. J. Biomed. Sci. 4: 89-96.

[12] Percival, M. 1998. “Antioxidants.” Clin. Nutr. Insight 31: 1-4.

[13] Dipankar, C., and Murugan, S. 2012. “The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine herbstii Leaf Aqueous Extracts.” Colloid Surf. B: Biointerfaces 98: 112-9.

[14] Szydlowska-Czerniak, A., Tulodziecka, A., and Szlyk, E. 2012. “A Silver Nanoparticle-Based Method for Determination of Antioxidant Capacity of Rapeseed and Its Products.” Analyst 137: 3750-9.

[15] Aydin, E., Türkez, H., and Geykoglu, F. 2013. “Antioxidative, Anticancer and Genotoxic Properties of α-Pinene on N2a Neuroblastoma Cells.” Biologia 68: 1004-9.

[16] Wang, W., Wu, N., Zu, Y. G., and Fu, Y. J. 2008. “Antioxidative Activity of Rosmarinus officinalis L. Essential Oil Compared to Its Main Components.” Food Chem. 108: 1019-22.

[17] Singh, H. P., Batish, D. R., Kaur, S., Arora, K., and Kohli, R. K. 2006. “α-Pinene Inhibits Growth and Induces Oxidative Stress in Roots.” Ann. Bot. 98: 1261-9.

[18] Baser, K. H. C., and Buchbauer, G. 2010. Handbook of Essential Oils, Science, Technology and Applications, CRC Press United States.

[19] Mannino, S., Brenna, O., Buratti, S., and Cosio, M. S. 1998. “A New Method for the Evaluation of the ‘Antioxidant Power’ of Wines.” Electroanal. 10: 908-12.

[20] Arnao, M. B. 2000. “Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case.” Trends Food Sci. 11: 419-21.

[21] Blasco, A. J., Rogerio, M. C., Gonzalez, M. C., amd Escarpa, A. 2005. “‘Electrochemical Index’ as a Screening Method to Determine ‘Total Polyphenolics’ in Foods: A Proposal.” Anal. Chim. Acta 539: 237-44.

[22] Ivekovic, D., Milardovic, S., Roboz, M., and Grabaric, B. S. 2005. “Evaluation of the Antioxidant Activity by Flow Injection Analysis Method with Electrochemically Generated ABTS Radical Cation.” Analyst 130:  708-714.

[23] Szydlowska-Czerniak, A., Trokowski, K., Karlovits, G., and Szlyk, E. 2010. “Determination of Antioxidant Capacity, Phenolic Acids, and Fatty Acid Composition of Rapeseed Varieties.” J. Agric. Food Chem. 58: 7502-9.

[24] Szydlowska-Czerniak, A., Bartkowiak-Broda, I., Karlovi, I., Karlovits, G., and Szlyk, E. 2011. “Antioxidant Capacity, Total Phenolics, Glucosinolates and Colour Parameters of Rapeseed Cultivars.” Food Chem. 127: 556-63.

[25] Wang, J., Zhou, N., Zhu, Z., Huang, J., and Li, G. 2007. “Detection of Flavonoids and Assay for Their Antioxidant Activity Based on Enlargement of Gold Nanoparticles.” Anal. Bioanal. Chem. 388: 1199-205.

[26] Lewis, L. N. 1993. “Chemical Catalysis by Colloids and Clusters.” Chem. Rev. 93: 2693-730.

[27] Chan, W. C. W., and Nie, S. M. 1998. “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection.” Science 281: 2016-8.

[28] Haruta, M., and Daté, M. 2001. “Advances in the Catalysis of Au Nanoparticles.” Appl. Catal. A 222: 427-37.

[29] Peña, S. R. N., Freeman, R. G., Reiss, B. D., He, L., Peña, D. J., Walton, I. D., Cromer, R., Keating, C. D., and Natan, M. J. 2001. “Submicrometer Metallic Barcodes.” Science 294: 137-41.

[30] Aroca, R. F. 2013. “Plasmon Enhanced Spectroscopy.” Phys. Chem. Chem. Phys. 15: 5355-66.

[31] Haes, A. J., and Van-Duyne, R. P. 2002. “A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles.” J. Am. Chem. Soc. 124: 10596-604.

[32] da Silva, A. L. C. M., Gutierres, M. G., Thesing, A., Lattuada, R. M., and Ferreira, J. 2014. “SPR Biosensors Based on Gold and Silver Nanoparticle Multilayer Films.” J. Braz. Chem. Soc. 25: 928-34.

[33] Chaudhary, A., Khan, S., Gupta, A., and Nandi, C. K. 2016. “Effect of Surface Chemistry and Morphology of Gold Nanoparticle on the Structure and Activity of Common Blood Proteins.” New J. Chem. 40: 4879-83.

[34] Adams, R. P. 2007. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry New York: Allured Publ. Carol Stream.

[35] Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R. 2015. Introduction to Spectroscopy, Stamford: Cengage Learning.

[36] Thesing, A., Loguercio, L. F., Santos, M. J. L., and Santos, J. F. L. 2016. “Simple Approach to Obtain a Localized Surface Plasmon Resonance Sensor Based on Poly(dimethylsiloxane)/Gold Nanoparticles Nanocomposite.” J. Nanosci. Nanotechnol. 16: 10080-6.

[37] Moores, A., and Goettmann, F. 2006. “The Plasmon band in Noble Metal Nanoparticles: An Introduction to Theory and Applications.” New J. Chem. 30: 1121-32.

[38] Doremus, R. H. 2002. “Optical Properties of Small Clusters of Silver and Gold Atoms.” Langmuir 18: 2436-7.

[39] Busbee, B. D., Obare, S. O., and Murphy, C. J. 2003. “An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods.” Adv. Mater. 15: 414-6.

[40] Horvath, H. 2009. “Gustav Mie and the Scattering and Absorption of Light by Particles: Historic Development and Basics.” J. Quant. Spectrosc. Ra. 110: 787-99.

[41] Haiss, W., Thanh, N. T. K., Aveyard, J., and Fernig, D. G. 2007. “Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra.” Anal. Chem. 79: 4215-21.

[42] Karakouz, T., Holder, D., Goomanovsky, M., Vaskevich, A., and Rubinstein, I. 2009. “Morphology and Refractive Index Sensitivity of Gold Island Films.” Chem. Mater. 21: 5875-85.

[43] Scampicchio, M., Wang, J., Blasco, A. J., Arribas, A. S., Mannino, S., and Escarpa, A. 2006. “Nanoparticle-Based Assays of Antioxidant Activity.” Anal. Chem. 78: 2060-3.

[44] Singh, A. K., and Srivastava, O. N. 2015. “One-Step Green Synthesis of Gold Nanoparticles Using Black Cardamom and Effect of pH on Its Synthesis.” Nanoscale Res. Lett. 10: 353.

[45] Dhillon, G. S., Brar, S. K., Kaur, S., and Verma, M. 2012. “Green Approach for Nanoparticle Biosynthesis by Fungi: Current Trends and Applications.” Crit. Rev. Biotechnol. 32: 49-73.

[46] MubarakAli, D., Thajuddin, N., Jeganathan, K., and Gunasekaran, M. 2011. “Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity against Clinically Isolated Pathogens.” Colloids Surf. B Biointerfaces 85: 360-5.

[47] Mittal, A. K., Chisti, Y., and Banerjee, U. C. 2013. “Synthesis of Metallic Nanoparticles Using Plant Extracts.” Biotechnol. Adv. 31: 346-56.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]