Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Laboratory for Pyrometallurgy of Ferrous Metatals, Institute of Metallurgy of Ural Branch of Russian Academy of Sciences, Ekaterinburg 620016, Russia
2. Beijing Liberty International Engineering Technology Co. Ltd., District Xicheng, Beijing 100033, China

ABSTRACT

To diagnose the lining condition of the blast furnace hearth during its campaign, are widely used methods based on the analysis of the temperature characteristics of the refractory lining. Measurement of the temperature characteristics is performed by means of a few hundred thermocouples placed inside the refractory lining. The peculiarity of proposed and used mathematical models is a fully three-dimensional assessment of the refractory lining, presence mechanisms of adaptation to the actual thermal conductivity of refractories and optimization calculations to the work in the on-line mode. The new monitoring systems of the lining wear of the blast furnace hearth are established on 5 blast furnaces of integrated iron-and-steel works of China: No.4 by volume 3,200 m3 of “Jinan Iron & Steel Company” in Jinan (683 thermocouples), No.2 by volume 1,080 m3 of “Henan Jiyuan Iron & Steel (Group) Company” in Jiyuan (212 thermocouples), No.4 by volume 2,500 m3 of “Guangxi Liuzhou Iron & Steel (Group) Company” in Liuzhou (383 thermocouples), No.3 by volume 1,750 m3 of “Jinan Iron & Steel Company” in Jinan (524 thermocouples); No.1 by volume 1,750 m3 of “Jinan Iron & Steel Company” in Jinan (524 thermocouples).

KEYWORDS

Blast furnace, hearth, lining, diagnosis, thermocouples, mathematical model, adaptation, introduction in industry.

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]