Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

The production of chemicals from biomass is a very challenging process due to its diverse chemical composition. Lignin, cellulose and hemicellulose are the three main biopolymers of wood biomass, with cell walls of plant origin. Lignin has been chosen for the present studies due to its range of different linkages and structures. The present work involved a computational study of the most dominant lignin dimers and their vibrational structures, based on the Density Functional Theory method. Full geometry optimization of the compartments used the StoBe code with cluster model and non-local functional (RPBE) approach. The calculations of the vibrational frequencies were performed with harmonic approximations as well as an anharmonicity fit in the Morse potential function, as implemented in the StoBe code. In the case of lignin, the calculations included three different precursors based on: coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. To represent the cellulose and hemicellulose derivatives, selected aldopentoses and aldohexoses (arabinose, xylose, glucose, galactose, and mannose) were considered. Presented here are the theoretical investigations for a variety of biomass derived compounds, to give the possibility of obtaining a theoretical VBD (Vibrations Basis Database) for experimental spectra interpretation. Such a database could be further used in the preliminary composition assessment of biomass derived substrates, which will be discussed here in more detail.

KEYWORDS

Wood biomass, lignin, cellulose, vibrational structure, DFT (density functional theory)

Cite this paper

References

[1] Huber, G. W., Iborra, S., and Corma, A. 2006. “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering.” Chemical Reviews 106: 4044-98.

[2] Langan, P., Gnanakaran, S., Rector, K. D., Pawley, N., Fox, D. T., Cho, D. W., and Hammel, K. E. 2011. “Exploring New Strategies for Cellulosic Biofuels Production.” Energy and Environmental Science 4: 3820-33.

[3] da Costa Sousa, L., Chundawat, S. P. S., Balan, V., and Dale, B. E. 2009. “‘Cradle-to-grave’ Assessment of Existing Lignocellulose Pretreatment Technologies.” Current Opinion in Biotechnology 20: 339-47.

[4] Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. and Foust, T. D. 2007. “Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuel Production.” Science 315: 804-7.

[5] Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W. J. Jr., Hallett, J. P., Leak, D. J., and Liotta, C. L.. 2006. “The Path Forward for Biofuels and Biomaterials.” Science 311: 484–9.

[6] Jarvis M. C., and McCann M. C. 2000. “Macromolecular Biophysics of the Plant Cell Wall: Concepts and Methodology.” Plant Physiology and Biochemistry 38: 1-13.

[7] Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., and Bayer, E. A. 2012. “How does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility?” Science 338: 1055-60.

[8] Dorrestijn, E., Laarhoven, L. J. J., Arends, I. W. C. E., and Mulder, P. 2000. “The Occurrence and Reactivity of Phenoxyl Linkages in Lignin and Low Rank Coal.” Journal of Analytical and Applied Pyrolysis 54: 153-92.

[9] Gosselink, R. J. A., de Jong, E., Guran, B., and Abächerli, A. 2004. “Co-ordination Network for Lignin Standardisation, Production and Applications Adapted to Market Requirements (EUROLIGNIN).” Industrial Crops and Products 20: 121-9.

[10] Björkman, A. 1957. “Lignin and Lignin-Carbohydrate Complexes.” Industrial and Engineering Chemistry 49: 1395-8.

[11] Dorrestijn, E., Laarhoven, L. J. J., Arends, I. W. C. E., and. Mulder, P. 2000. “The Occurrence and Reactivity of Phenoxyl Linkages in Lignin and Low Rank Coal.” Journal of Analytical and Applied Pyrolysis 54: 153-92.

[12] Parthasarathi, R., Romero, R. A., Redondo, A., and Gnanakaran, S. 2011. “Theoretical Study of the Remarkably Diverse Linkages in Lignin.” Journal of  Physical Chemistry Letters 2: 2660-6.

[13] Martinez, C., Rivera, J. L., Herrera, R., Rico, J. L., Flores, N., Rutiaga, J. G., and López, P. 2007. “Evaluation of the Chemical Reactivity in Lignin Precursors using the Fukui Function.” Journal of Molecular Modeling 14: 77-81.

[14] Haensel, T., Reinmoeller, M., Lorenz, P., Beenken, W. J. D., Krischok, S., and Imad-Uddin Ahmed, S. 2012. Cellulose 19: 1005.

[15] Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., and Malek, K. 2017. “Raman and Infrared Spectroscopy of Carbohydrates: A review.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 185: 317-35.

[16] Brauer, B., Pincu, M., Buch, V., Bar, I., Simons, J. P., and Gerber, R. B. 2011. “Vibrational Spectra of α-glucose, β-glucose, and Sucrose: Anharmonic Calculations and Experiment.” Journal of Physical Chemistry A 115: 5859-72.

[17] Zheng, R., Wei, W., and Shi, Q. 2009. “Density Functional Theory Study on Sum-Frequency Vibrational Spectroscopy of Arabinose Chiral Solutions.” Journal of Physical Chemistry A 113: 157-64.

[18] Konopka, C. 2011. “Influence of the Preparation Method of Lignin and Comparison to Commercial Products.” Bachelor Thesis, Faculty of Materials Engineering of Georg Simon Ohm University of Applied Sciences (Nuremberg, Germany).

[19] Hermann, K., Pettersson, L. G. M., Casida, M. E., Daul, C., Goursot, A., Koester, A., Proynov, E., St-Amant, A., Salahub, D. R., Carravetta, V., Duarte, A., Godbout, N., Guan, J., Jamorski, C., Leboeuf, M., Leetmaa, M., Nyberg, M., Pedocchi, L., Sim, F., Triguero, L., and Vela, A. 2005. StoBe-deMon, deMon Software: Stockholm, Berlin.

[20] Perdew, J. P., Burke, K., and Ernzerhof, M. 1996. “Generalized Gradient Approximation Made Simple.” Physical Review Letters 77: 3865-8.

[21] Hammer, B., Hansen, L. B., and Nørskov, J. K. 1999. “Improved Adsorption Energetics within Density-Functional Theory using Revised Perdew-Burke-Ernzerhof Functionals.” Physical Review B 59: 7413-21.

[22] Labanowski, J. K., and Anzelm, J. W. 1991. Eds., Density Functional Methods in Chemistry, Springer, New York.

[23] Broclawik, E., and Salahub, D. R. 1993. “Density Functional Theory and Quantum Chemistry: Metals and Metal Oxides.” Journal of Molecular Catalysis 82: 117-29.

[24] Friedrich, C. 2004. “Geometrische, Elektronische und Vibronische Eigenschaften der Reinen und Defektbehafteten V2O5(010)-Oberfläche und Deren Wechselwirkung mit Adsorbaten: Theoretische Untersuchungen.” Ph.D. Thesis, Free University of Berlin.

[25] Santos, R., Hart, P. W., Jameel, H., and Chang, H. M. 2013. “Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries.” BioResources 8: 1456-77.

[26] Chen, H. 2014. “Biotechnology of Lignocellulose: Theory and Practice, Chapter 2: Chemical Composition and Structure of Natural Lignocellulose.” Chemical Industry Press, Beijing, and Springer Science + Business Media Dordrecht.

[27] Schneider, B., Stokr, J., Schmidt, P., Mihailov, M., Dirlikov, S., and Peeva, N. 1979. “Stretching and Deformation Vibrations of CH2, C(CH3) and O(CH3) Groups of Poly(methyl methacrylate).” Polymer 20: 705-12.

[28] van den Broek, M. A. F. H., Nienhuys, H. K., and Bakker, H. J. 2001. “Vibrational Dynamics of the C–O Stretch Vibration in Alcohols.” The Journal of Chemical Physics 114: 3182-6.

[29] Silverstein, R. M., Bassler, G. C., and Morrill, T. C. 1981. “Spectrometric Identification of Organic Compounds.” 4th ed. New York: John Wiley and Sons, 1981.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]