Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

A fast, green and readily reproducible microwave-based method for the production of high quality silver nanoparticles (AgNPs) in high yield is presented. Starch is used as a stabilizing agent with few pentose different reducing carbohydrates as D-ribose, D-arabinose and L-arabinose. From the UV-vis peak profile spectra of the solutions of the silver nanoparticles, the authors have investigated the size of the NPs together with the average diameter, shape, and aggregation state of the colloidal AgNPs. TEM measurements and EDX analysis have confirmed the morphology of our AgNPs.

KEYWORDS

Microwave synthesis, UV-vis spectroscopy, Mie theory, silver nanoparticles, TEM and EDX.

Cite this paper

References
[1] Schmid, G. 2010. Nanoparticles: From Theory to Application. 2 ed. Wiley-VCH. [2] Kumar, C. S. S. R. 2013. UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. 1 ed. Springer. [3] Alarcon, E., Griffith, M., and Udekwu, K. I. 2015. Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. 1 ed. [4] Meena Kumari, M., Jacob, J., and Philip, D. 2015. “Green Synthesis and Applications of Au-Ag Bimetallic Nanoparticles.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (0): 185-92. [5] Dongyue, S., Xin, Y., Qingdong, X., Qi, Z., Fang, C., Chungang, W., and Fengyu, Q. 2014. “Folic Acid Functionalized Silver Nanoparticles with Sensitivity and Selectivity Colorimetric and Fluorescent Detection for Hg2+ and Efficient Catalysis.” Nanotechnology 25 (35): 355702. [6] Joseph, S., and Mathew, B. 2014. “Microwave-Assisted Facile Synthesis of Silver Nanoparticles in Aqueous Medium and Investigation of Their Catalytic and Antibacterial Activities.” Journal of Molecular Liquids 197 (0): 346-52. [7] Zhang, Y., Zhang, K., and Ma, H. 2009. “Electrochemical DNA Biosensor Based on Silver Nanoparticles/poly(3-(3-pyridyl) Acrylic Acid)/Carbon Nanotubes Modified Electrode.” Anal Biochem 387: 13-9. [8] Fernandez, E. J., Garcia-Barrasa, J., Laguna, A., and Lopez-deLuzuriaga, J. 2008. “The Preparation of Highly Active Antimicrobial Silver Nanoparticles by an Organometallic Approach.” Nanotechnology 19: 1-6. [9] Durán, N., Guterres, S. S., Alves, O. L., and Zucolotto, V. 2014. Nanotoxicology: Materials, Methodologies, and Assessments. 1 ed. [10] Xia, Y., and Campbell, D. J. 2007. “Plasmons: Why Should We Care?” Journal of Chemical Education 84 (1): 91. [11] Xia, Y., and Halas, N. J. 2005. “Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures.” MRS Bulletin 30 (05): 338-48. [12] Dubas, S. T., and Pimpan, V. 2008. “Green Synthesis of Silver Nanoparticles for Ammonia Sensing.” Talanta 76 (1): 29-33. [13] Turkevich, J., Stevenson, P. C., and Hiller, J. 1951. “Discuss.” Faraday Soc. (11): 55 [14] Donati, I., Travan, A., Pelillo, C., Scarpa, T., Coslovi, A., Bonifacio, A., Sergo, V., and Paoletti, S. 2009. “Polyol Synthesis of Silver Nanoparticles: Mechanism of Reduction by Alditol Bearing Polysaccharides.” Biomacromolecules 10 (2): 210-3. [15] Rodríguez-Sánchez, L., Blanco, M. C., and López-Quintela, M. A. 2000. “Electrochemical Synthesis of Silver Nanoparticles.” The Journal of Physical Chemistry B 104 (41): 9683-8. [16] Xu, H., and Suslick, K. S. 2010. “Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters.” ACS Nano 4 (6): 3209-14. [17] Bhainsa, K. C., and D’Souza, S. F. 2006. “Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigatus.” Colloids Surfac B Biointerface 47: 160-4. [18] Hebbalalu, D., Lalley, J., Nadagouda, M. N., and Varma, R. S. 2013. “Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves.” ACS Sustainable Chemistry & Engineering 1 (7): 703-12. [19] Li, B., Smilgies, D.-M., Price, A. D., Huber, D. L., Clem, P. G., and Fan, H. 2014. “Poly(N-isopropylacrylamide) Surfactant-Functionalized Responsive Silver Nanoparticles and Superlattices.” ACS Nano. 8 (5): 4799-804. [20] Hu, X., and Yu, J. C. 2013. Microwave-Assisted Solution Synthesis of Nanomaterials. In Microwaves in Nanoparticle Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA. [21] Khan, Z., Singh, T., Hussain, J. I., Obaid, A. Y., Al-Thabaiti, S. A., and El-Mossalamy, E. H. 2013. “Starch-Directed Green Synthesis, Characterization and Morphology of Silver Nanoparticles.” Colloids and Surfaces B: Biointerfaces 102 (0): 578-84. [22] Cooke, J., Hebert, D., and Kelly, J. A. 2015. “Sweet Nanochemistry: A Fast, Reliable Alternative Synthesis of Yellow Colloidal Silver Nanoparticles Using Benign Reagents.” Journal of Chemical Education 92 (2): 345-9. [23] Zain, N. M., Stapley, A. G. F., and Shama, G. 2014. “Green Synthesis of Silver and Copper Nanoparticles Using Ascorbic Acid and Chitosan for Antimicrobial Applications.” Carbohydrate Polymers 112 (0): 195-202. [24] Horikoshi, S., and Serpone, N. 2013. Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. 1 ed. Wiley-VCH. [25] Perez, D. P. 2010. Silver Nanoparticles. InTech. [26] Pal, A., Shah, S., and Devi, S. 2009. “Microwave-Assisted Synthesis of Silver Nanoparticles Using Ethanol as a Reducing Agent.” Materials Chemistry and Physics 114 (2-3): 530-2. [27] Chen, J., Wang, J., Zhang, X., and Jin, Y. 2008. “Microwave-assisted Green Synthesis of Silver Nanoparticles by Carboxymethyl Cellulose Sodium and Silver Nitrate.” Materials Chemistry and Physics 108: (2-3): 421-4. [28] El-Sherbiny, I., Salih, E., and Reicha, F. 2013. “Green Synthesis of Densely Dispersed and Stable Silver Nanoparticles using Myrrh Extract and Evaluation of Their Antibacterial Activity.” Journal of Nanostructure in Chemistry 3 (1): 8. [29] Joseph, S., and Mathew, B. 2014. “Microwave-assisted Facile Synthesis of Silver Nanoparticles in Aqueous Medium and Investigation of Their Catalytic and Antibacterial Activities.” Journal of Molecular Liquids 197 (0): 346-52. [30] Aswathy, B., Avadhani, G. S., Sumithra, I. S., Suji, S., and Sony, G. 2011. “Microwave Assisted Synthesis and UV–vis Spectroscopic Studies of Silver Nanoparticles Synthesized Using Vanillin as a Reducing Agent.” Journal of Molecular Liquids 159 (2): 165-9. [31] Benvenuto, M. A. 2001. “Gelatin and the Tyndall Effect: A Colorful and Tasty Demonstration.” The Chemical Educator 6 (2): 95-6. [32] Haes, A. J., Haynes, C. L., McFarland, A. D., Schatz, G. C., Van Duyne, R. P., and Zou, S. 2005. “Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy.” MRS Bulletin 30 (05): 368-75. [33] Pierce, D. T., and Zhao, J. X. 2010. “Trace Analysis with Nanomaterials.” 1 ed. Wiley-VCH. [34] Dong, Z., Richardson, D., Pelham, C., and Islam, M. R. 2008. “Rapid Synthesis of Silver Nanoparticles using a Household Microwave and their Characterization: A Simple Experiment for Nanoscience Laboratory.” The Chemical Educator 13 (4): 240-3. [35] Yamamoto, T., Wada, Y., Sakata, T., Mori, H., Goto, M., Hibino, S., and Yanagida, S. 2004. “Microwave-Assisted Preparation of Silver Nanoparticles.” Chemistry Letters 33 (2): 158-9. [36] He, S., Yao, J., Jiang, P., Shi, D., Zhang, H., Xie, S., Pang, S., and Gao, H. 2001. “Formation of Silver Nanoparticles and Self-assembled Two-Dimensional Ordered Superlattice.” Langmuir 17 (5): 1571-5.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]