Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.

KEYWORDS

DSSCs (Dye-sensitized solar cells), salen complexes, chirality, DFT

Cite this paper

References

[1] Harlang, T. C. B., Yizhu, L., Gordivska, O., and Fredin, L. A. 2015. “Iron Sensitizer Converts Light to Electrons with 92% Yield.” Nature Chemistry 7 (October): 883-9.

[2] Yeh, M. H., Hsu, H. R., Wang, K. C., Ho, S. J., Chen, G. H., and Chen, H. S. 2016. “Toward Low-Cost Large-Area CIGS Thin Film: Compositional and Structural Variations in Sequentially Electrodeposited CIGS Thin Films.” Sol. Energy 125 (December): 415-25.

[3] Fischer, G., and Torsten, W. 2014. “Simulation Based Development of Industrial PERC Cell Production beyond 20.5% Efficiency.” Energy Procedia 55: 425-30.

[4] Diouf, D., Kleider, J. P., Desrues, T., and Ribeyron, P. J. 2009. “Study of Interdigitated Back Contact Silicon Heterojunction Solar Cells by Two-Dimensional Numerical Simulations.” Mater. Sci. Eng. B 159 (March): 291-4.

[5] Fitzgerald, E. A., Xie, Y. H., and Monroe, D. 1992. “Relaxed GexSi1-x Structures for III-V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si.” J. Vac. Sci. Technol. B 10 (July): 1807-9.

[6] Sariciftci, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F. 1992. “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene.” Science 258 (November): 1474-6.

[7] Moon, S. J., Itzhaik, Y., Yum, J. H., Zakeeruddin, S. M., Hodes, G., and Grätzel, M. 2010. “Sb2S3-Based Mesoscopic Solar Cell Using an Organic Hole Conductor.” J. Phys. Chem. Lett. 1 (April): 1524-7.

[8] Lee, H., Leventis, H. C., Moon, S. J., Chen, P., Ito, S., Haque, S. A., Torres, T., Nüesch, F., Geiger, T., Zakeeruddin, S. M., Grätzel, M., and Md. Nazeeruddin, M. K. 2009. “PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: Old Concepts, New Results.” Adv. Funct. Mater 19 (June): 2735-42.

[9] O’Regan, B., and Grätzel, M. 1991. “A Low-Cost, High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films.” Nature 353 (October): 737-9.

[10] Kinoshita, T., Joanne, D. Y., Uchida, S., Kubo, T., and Segawa, H. 2013. “Wideband Dye-Sensitized Solar Cells Employing a Phosphine-Coordinated Ruthenium Sensitizer.” Nature Photonics 7 (June): 535-9.

[11] Bowman, D. N., Mukherjee, S., Barnes, L. J., and Jakubikova, E. 2015. “Linker Dependence of Interfacial Electron Transfer Rates in Fe(II)-Polypyridine Sensitized Solar Cells.” J. Phys. Condens. Matter 27 (March): 134205.

[12] Lu, X., Wu, C. H. L., Wei, S., and Guo, W. 2010. “DFT/TD-DFT Investigation of Electronic Structures and Spectra Properties of Cu-Based Dye Sensitizers.” J. Phys. Chem. A 114 (December): 1178-4.

[13] Nazeeruddin, M. K., Pechy, P., and Renouard, T. 2001. “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells.” J. Am. Chem. Soc. 123 (February): 1613-24.

[14] Lee, K. E., Gomez, M. A., Regier, T., Hu, Y., and Demopoulos, G. 2011. “Further Understanding of the Electronic Interactions between N719 Sensitizer and Anatase TiO2 Films: A Combined X-Ray Absorption and X-Ray Photoelectron Spectroscopic Study.” J. Phys. Chem. C 115 (March): 5692-707.

[15] Shahzad, N., Risplendi, F., and Pugliese, D. 2013. “Comparison of Hemi-Squaraine Sensitized TiO2 and ZnO Photoanodes for DSSC Applications.” J. Phys. Chem. C 117 (September): 22778-83.

[16] Honda, M., Yanagida, M., Han, L., and Miyano, K. 2013. “X-Ray Characterization of Dye Adsorption in Coadsorbed Dye-Sensitized Solar Cells.” J. Phys. Chem. C 117 (July): 17033-8.

[17] Tanaka, H., Nishikawa, H., Uchida, T., and Katsuki, T. 2010. “Photopromoted Ru-Catalyzed Asymmetric Aerobic Sulfide Oxidation and Epoxidation Using Water as a Proton Transfer Mediator.” J. Am. Chem. Soc. 132 (August): 12034-41.

[18] Jia, Y., Gou, F., Fang, R., Jing, H., and Zhu, Z. 2014. “Salen Zn-Bridged D--A Dyes for Dye-Sensitized Solar Cells.” Chin. J. Chem. 32 (April): 513-20.

[19] Hwang, K. Y., Kim, H., Lee, Y. S., Lee, M. H., and Do, Y. 2009. “Synthesis and Properties of Salen-Aluminium Complexes as a Novel Class of Color-Tunable Luminophores.” Chem. Eur. J. 15 (May): 6478-87.

[20] Chiang, L., Harasymchuk, K., Thomas, F., and Storr, T. 2015. “Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes.” J. Am. Chem. Soc. Inorg. Chem. 54 (May): 5970-80.

[21] Shoji, R., Ikenomoto, S., Sunaga, N., Sugiyama, M., and Akitsu, T. 2016. “Absorption Wavelength Extension for Dye-Sensitized Solar Cells by Varying the Substituents of Chiral Salen Cu(II) Complexes.” J. Appl. Sol. Chem. Model 5 (February): 48-56.

[22] Kim, H., Nguyen Y., Yen, C. P. H., Chagal, L., Lough, A. J., Kim, B. M., and Chin, J. 2008. “Stereospecific Synthesis of C2 Symmetric Diamines from the Mother Diamine by Resonance-Assisted Hydrogen-Bond Directed Diaza-Cope Rearrangement.” J. Am. Chem. Soc. 130 (June): 12184-91.

[23] Numata, T., Ikenomoto, S., and Akitsu, T. 2016. “4,4’-(1,2-Diazaniumylethane-1,2-Diyl)Dibenzoate Trihydrate.” IUCrData 1 (February): 160252.

[24] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., and Barone, V. et al. 2009. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc.

[25] Rietveld, H. M. 1968. “A Profile Refinement Method for Nuclear and Magnetic Structures.” J. Appl. Crystallogr. 2 (November): 65-71.

[26] Suganya, K., and Kabilan, S. 2004. “Substituent and Solvent Effects on Electronic Absorption Spectra of Some N-(Substitutedphenyl) Benzene Sulphonamides.” Spectrochimica Acta 60 (April): 1225-8.

[27] Ozawa, H., Tawaraya, Y., and Arakawa, H. 2015. “Effects of the Alkyl Chain Length of Imidazolium Iodide in the Electrolyte Solution on the Performance of Black-Dye-Based Dye-Sensitized Solar Cells.” Electrochimica Acta 151 (January): 447-52.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]