Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

ABSTRACT

The instability of the tensile armor wire of flexible pipes is a failure mode associated with deep and ultra-deep water applications. Real compressive forces acting on the pipe are necessary to trigger this process. The loss of stability may be divided into two distinct processes, according to the main direction of the wire’s displacement: radial or lateral instability. This study aims at proposing a numerical tool for predicting lateral and radial critical buckling loads for the tensile armor wires of flexible pipes. A simple finite element model, based on springs and beams elements, was developed in ABAQUS® to deal with this problem in an efficient and reliable manner. A parametric study was conducted concerning the behavior of the critical load when the laying angle, the initial curvature and the total pipe length are varied. The results were consistent with previously published literature data and analytical expressions, proving its applicability to pipe engineering projects. It also has the advantage of approaching the problem three-dimensionally, which allows further modelling modifications, such as including friction effects.

KEYWORDS

Unbonded flexible pipes, instability, finite element modeling

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]