Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. Technological Institute onCivil Construction - itt Performance, Unisinos University, São Leopoldo 93022-750, Brazil;
2. National Laboratory for Civil Engineering-LNEC, Lisbon1700-066, Portugal

ABSTRACT

Floor systems with non-homogeneous slabs have more complex means of propagation than homogeneous systems, with more variables to be considered in predictions by theoretical models. For those slabs, it is necessary to understand the differences of each material composing each subsystem, and the connection types between the elements of each one of this subsystem. Some floors integrating lightweight elements without structural purposes, are broadly used in several countries in precast slabs. The predictions based on computer modelling for building systems can be influenced by the input parameters related to connections between the elements of the floor system. In building structures, the analysis of radiation due to element vibrations may be represented by wave propagation relationships as a one-dimensional system, a two-dimensional system or a three-dimensional solid. In these floors, the modelling of the interaction between elements can be basically a face, a line or a point connection. In addition, the choice of the connection type can determine the vibration transmission amongst all the floor elements. This study focuses on the differences that can be obtained in the induced vibration response due to an impact source on non-homogeneous slabs. It also presents some examples of modelling options for several floor systems, considering input parameters for different connection types.

KEYWORDS

Non-homogeneous floors, vibrational response, finite element analysis.

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 1-323-984-7526; Email: [email protected]