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Abstract: An analytical approach based on the power series method is used to analyze the free vibration of a cantilever beam with 

geometric and inertia nonlinearities. The time variable is transformed into a “harmonically oscillating time” variable which 
transforms the governing equation into a form well-conditioned for a power series analysis. Rayleigh’s energy principle is also used 

to determine the vibration frequency. Convergence of the power series solution is demonstrated and excellent agreement is seen for 
the vibration response with a numerical solution. 
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1. Introduction 

The analysis of nonlinear vibration systems has 

traditionally relied on the use of the LP 

(Lindstedt-Poincare) perturbation [1-3] and the HB 

(harmonic balance) [4-6] methods. However, the use 

of the LP perturbation method is often limited to cases 

where the nonlinear parameters are small thus 

precluding the treatment of relatively large oscillations. 

The HB method can be used to analyze large 

amplitude oscillations but the computational labor 

required becomes overwhelming. 

Recently, several techniques have been developed 

to treat oscillations with strong nonlinearities, such as 

the modified LP method [7], the power series method 

[8] and the homotopy analysis method [9]. 

In this paper, the free vibration of a conservative 

cantilever beam with geometric and inertia nonlinearities 

is obtained using the power series method. This 

system has been analyzed by Joubari et al. [10] using 

the modified iteration perturbation method which 

combines Mickens and iteration methods. The 

accuracy of the power series solution is checked by a 

comparison of the vibration frequency obtained by the 
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two methods for different values of vibration 

amplitude and nonlinear parameters. The displacement 

and velocity responses obtained by the present method 

are also compared with a numerical solution. 

2. Analytical Formulation 

Consider the free vibration of a cantilever beam 

with nonlinearity in the stiffness and the inertia as 

governed by the differential equation: 

𝑢̈+𝛼 (𝑢ଶ𝑢̈+𝑢 𝑢̇ଶ)+𝑢 + 𝛽 𝑢ଷ = 0   (1) 

Subject to the initial conditions: u(0) = A and 𝑢̇(0) 

= 0. The solution of this conservative oscillator is 

periodic. In order to facilitate the use of the power 

series method to capture periodic motion, an 

oscillating time variable [8] is introduced as:  

 𝜏 = sin(𝜔𝑡)             (2) 

which starts at 𝜏 = 0  when t = 0 and oscillates 

between the values -1 and +1 at a frequency 𝜔 as t is 

increased indefinitely. The infinite time scale 

0 ≤  𝑡 ≤  ∞  is thereby reduced to a finite time 

domain −1 ≤  𝜏 ≤ 1. When Eq. (1) is transformed 

from the u-t plane to the u-𝜏 plane in accordance with 

Eq. (2), the transformed differential equation and 

initial conditions become: 

𝜔ଶ[(1 − 𝜏ଶ)𝑢ᇱᇱ − 𝜏𝑢ᇱ](1 + 𝛼𝑢ଶ) + 

𝛼𝜔ଶ(1 − 𝜏ଶ)𝑢𝑢ᇱଶ
+ 𝑢 + 𝛽 𝑢ଷ = 0      (3) 
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𝑢(0) = 𝐴 and 𝑢ᇱ(0) =  𝑢̇(0)/𝜔= 0 

where the prime denotes differentiation with respect to 

𝜏. The frequency 𝜔 is as yet undetermined. Eq. (3) 

has an ordinary point at 𝜏 = 0  and two regular 

singular points at 𝜏  = ±1. For linear vibration   

( 𝛼 = 0, 𝛽 = 0 ) , differential equation theory   

guarantees convergent power series expansion about 

𝜏 = 0 with a radius of convergence |τ| < 1. This 

convergence interval covers the infinite time domain 

except at the singular points. However, for nonlinear 

differential equations, the question of convergence is 

still not settled. Here, it is assumed that a convergent 

power series expansion about 𝜏 = 0  exists. For 

|𝜏| < 1, as: 

𝑢(𝜏) = 𝑎ଵ + 𝑎ଶ 𝜏 + 𝑎ଷ𝜏ଶ + ⋯  =  ෍ 𝑎௡𝜏௡ିଵ

ஶ

௡ୀଵ

 (4) 

where 𝑎௜ is constant coefficients to be determined. 

Using Eq. (4), the remaining terms in Eq. (3) can be 

expanded as: 

𝑢ଶ =  ෍ 𝑏௡𝜏௡ିଵ

ஶ

௡ୀଵ

 (5) 

𝑢ଷ =  ෍ 𝑐௡𝜏௡ିଵ

ஶ

௡ୀଵ

 (6) 

𝜔ଶ[(1 − 𝜏ଶ)𝑢ᇱᇱ − 𝜏𝑢ᇱ]

= 𝜔ଶ ෍ [𝑛(𝑛 + 1)
ஶ

௡ୀଵ
𝑎௡ାଶ

− (𝑛 − 1)ଶ𝑎௡]𝜏௡ିଵ

= ෍ 𝑞௡𝜏௡ିଵ

ஶ

௡ୀଵ

 

(7) 

(1 + 𝛼𝑢ଶ) = (1 + 𝛼𝑏ଵ) + 𝛼𝑏ଶ𝜏 + 𝛼𝑏ଷ𝜏ଶ + ⋯  

= ෍ 𝐵௡𝜏௡ିଵ

ஶ

௡ୀଵ

 
(8) 

(1 − 𝜏ଶ)𝑢𝑢′ଶ =  ෍ 𝑓௡𝜏௡ିଵ

ஶ

௡ୀଵ

 (9) 

The first term in the transformed Eq. (3) involving 

the product of two power series can be simplified as 

follows: 

𝜔ଶ[(1 − 𝜏ଶ)𝑢ᇱᇱ − 𝜏𝑢ᇱ](1 + 𝛼𝑢ଶ)

= (෍ 𝑞௡𝜏௡ିଵ)(෍ 𝐵௡𝜏௡ିଵ)

ஶ

௡ୀଵ

ஶ

௡ୀଵ

= ෍ 𝑃௡𝜏௡ିଵ

ஶ

௡ୀଵ

 

(10) 

Upon substituting Eqs. (4), (6), (9) and (10) into Eq. 

(3), the resulting governing equation is: 

෍[𝑃௡ +  𝛼𝜔ଶ𝑓௡ + 𝑎௡ +  𝛽𝑐௡]𝜏௡ିଵ  =  0

ஶ

௡ୀଵ

 (11) 

This equation is satisfied if all the coefficients 

vanish, which yields: 

𝑃௡ =  −𝑎௡ − 𝛽𝑐௡ − 𝛼𝜔ଶ𝑓௡ , 𝑛 = 1, 2, … .. (12) 

Imposing the initial conditions results in 𝑎ଵ =

𝐴,  𝑎ଶ = 0  giving 𝑏ଵ = 𝐴ଶ, 𝑏ଶ = 0,   𝑐ଵ = 𝐴ଷ, 𝑐ଶ =

0,   𝑓ଵ = 0. To facilitate programming the recursive 

relation, the first expression (n = 1) in Eq. (12) is 

considered separately and using Eq. (10) becomes as 

follows: 

𝑃ଵ =  𝑞ଵ 𝐵ଵ =  𝜔ଶ(2𝑎ଷ − 0 )𝐵ଵ =  −𝐴 − 𝛽𝐴ଷ − 0 

So that: 

𝑎ଷ =  
−𝐴 − 𝛽𝐴ଷ

2𝜔ଶ(1 + 𝛼𝐴ଶ)
 (13) 

Similarly, for n > 1, Eq. (12) can, in conjunction 

with Eq. (10), be written as: 

𝜔ଶ[𝑛(𝑛 + 1)𝑎௡ାଶ − (𝑛 − 1)ଶ𝑎௡]𝐵ଵ

+ ෍ 𝑞௞𝐵௡ି௞ାଵ

௡ିଵ

௞ୀଵ

= −𝑎௡ − 𝛽𝑐௡ − 𝛼𝜔ଶ𝑓௡ 

Giving the recursive equation: 

𝑎௡ାଶ

=
(𝑛 − 1)ଶ

𝑛(𝑛 + 1)
𝑎௡

− 
𝑎௡ + 𝛽𝑐𝑛 + 𝛼𝜔ଶ𝑓௡ + ∑ 𝑞௞𝐵௡ି௞ାଵ

௡ିଵ
௞ୀଵ

𝑛(𝑛 + 1)𝜔ଶ(1 + 𝛼𝐴ଶ)
 

n = 2, 3, … 

(14) 
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As might be expected, all the coefficients 𝑎ଷ and 

higher can be written in terms of 𝑎ଵ and 𝑎ଶ  which 

are the two fundamental coefficients connected with 

the initial conditions. In addition, all these coefficients 

depend on the oscillating time frequency 𝜔 . The 

computation of the oscillating time frequency is made 

possible by noting that, for a conservative system, the 

sum of kinetic and potential energies is constant. For a 

given set of initial conditions, periodic motion is 

represented in the phase plane by perpetual movement 

around a closed orbit of constant energy, completing 

one orbit in one period of vibration. Since the point of 

initial conditions on the orbit is defined uniquely by 

𝜏 = 0, the oscillating time must circle one orbit in 

one-half cycle of vibration. As a consequence, the 

frequency of oscillating time 𝜔 is one-half of the 

vibration frequency Ω: 

𝜔 =  
Ω

2
 (15) 

For the system under consideration, the kinetic and 

potential energies T and U respectively are given by: 

𝑇 =  
1

2
( 1 +  𝛼𝑢ଶ)𝑢̇ଶ, 𝑈 =  

1

2
𝑢ଶ + 

1

4
 𝛽 𝑢ସ (16) 

The motion is assumed to start at 𝜏 = 0  with 

maximum displacement so that the equilibrium 

position associated with maximum velocity is reached 

at angular positions Ω 𝑡 =
஠

ଶ
,

ଷ஠

ଶ
, …  for which 

𝜔 𝑡 =
஠

ସ
,

ଷ஠

ସ
, … …  𝑎𝑛𝑑 𝜏 =  ±

ଵ

√ଶ
. 

The velocity in the x-t plane is related to that of the 

x-𝜏 plane as: 

𝑢̇  =  ± 𝜔 ඥ(1 − 𝜏ଶ)𝑢ᇱ (17) 

Rayleigh’s energy principle for conservative 

systems which equates the maximum potential and 

kinetic energies may now be used to determine the 

oscillating time frequency. Now 𝑈௠௔௫ =  
ଵ

ଶ
𝐴ଶ +

 
ଵ

ସ
𝛽 𝐴ସ and the maximum kinetic energy: 

𝑇௠௔௫ =  
1

2
 (1 + 𝛼𝑢ଶ)(1 − 𝜏ଶ)𝜔ଶ𝑢ᇱଶ 

is evaluated at 𝜏 =  
ଵ

√ଶ
, corresponding to maximum 

velocity. The oscillating time frequency 𝜔  is a root 

of the function: 

𝑤 =  𝑈௠௔௫ − 𝑇௠௔௫ = 0 (18) 

Another root may exist at a change of sign of the 

function but the correct root always makes the function 

w a stationary minimum. The vibration frequency Ω 

is then twice that value and the corresponding series 

coefficients 𝑎௜ determine uniquely the periodic motion, 

which can be written directly in terms of time t as: 

𝑢(𝑡) =  𝑎ଵ + 𝑎ଷ𝑠𝑖𝑛ଶ𝜔𝑡 + 𝑎ହ𝑠𝑖𝑛ସ𝜔𝑡 + ⋯ (19) 

where all the even-numbered series coefficients vanish 

as a result of imposing the condition of zero initial 

velocity. 

3. Numerical Illustration 

The free vibration of the cantilever beam, Eq. (19), 

was computed for the initial conditions: 𝒖(𝟎) = 𝑨,

𝐚𝐧𝐝 𝒖̇(𝟎) = 𝟎,  where A is the amplitude of vibration. 

As an illustration, the values of the nonlinear 

parameters taken were 𝜶 = 𝟎. 𝟏 , 𝜷 = 𝟏𝟎. 

Table 1 gives a comparison of the vibration 

frequency Ω for different vibration amplitudes 

between the present method and the modified iteration 

perturbation method [10] which predicts the vibration 

frequency as follows: 

Ω𝟐
=  

(𝟒 + 𝟑𝜷𝑨𝟐)

(𝟒 + 𝟐𝜶𝑨𝟐)
 (20) 

The number of series terms used to obtain the 

solution was forty. Good agreement is seen between 

the two solutions. 

The first ten non-zero coefficients (odd-numbered) 

for this case are shown in Table 2. 
 

Table 1  Vibration frequency Ω for α = 0.1, β = 10. 

Vibration amplitude Perturbation [10] Power series 

1 2.8452 2.8002 

1.2 3.3177 3.2724 

1.6 4.2318 4.1842 

1.8 4.6661 4.5824 

2 5.0827 5.0230 
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Figs. 2 and 3 show a comparison of the displacement 

and velocity time histories, respectively, between the 

present method and those computed numerically using 

a fourth order Runge-Kutta scheme. Only the response 

of one cycle is shown as it is repeated over other cycles. 

Excellent agreement is seen between the two solutions.  
 

 
Fig. 1  The convergence of the vibration frequency predicted by the present method as the number of series terms is 

increased for the case when 𝑨 = 𝟏, 𝜶 = 𝟎. 𝟏 𝐚𝐧𝐝  𝜷 = 𝟏𝟎. 
 

Table 2  Series coefficients (A = 1, 𝜶 = 𝟎. 𝟏, 𝜷 = 𝟏𝟎). 

𝑎ଵ = 1.0000 𝑎ଷ = −2.5507 𝑎ହ = 1.8113 𝑎଻ = −1.7648 𝑎ଽ = 0.8081 

𝑎ଵଵ = −0.1756 𝑎ଵଷ =  −0.3749 𝑎ଵହ = 0.4423 𝑎ଵ଻ = −0.1959 𝑎ଵଽ = −0.1815 
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Figure 1.   Convergence of vibration frequency
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Fig. 2  Displacement response, α = 0.1, β = 10, A = 1. 

 

 
Fig. 3  Velocity response, α = 0.1, β = 10, A = 1. 
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4. Conclusion 

A power series solution has been presented to the 

free vibration of a cantilever beam with geometric and 

inertia nonlinearities. It is shown that the periodic 

motion of this conservative system can be represented 

by a power series expansion convergent for all time 

when the time variable is transformed by an “oscillating 

time” variable. The vibration frequency is determined 

by using Rayleigh’s energy principle and the resulting 

expansion uniquely defines the beam motion. 

References 

[1] Nayfeh, A. H. 1973. Perturbation Methods. New York: 

Wiley. 
[2] Minorsky, N. 1974. Nonlinear Oscillations. New York: 

Huntington. 
[3] Nayfeh, A. H., and Mook, D. T. 1979. Nonlinear 

Osillations. New York: Wiley. 

[4] Hagedorn, P. 1988. Nonlinear Oscillations. Oxford: 

Clarendon. 
[5] Mickens, R. E. 1966. Oscillations in Planar Dynamic 

Systems. Singapore: Word Scientific. 
[6] Mickens, R. E. 1986. “A Generalization of the Method of 

Harmonic Balance.” Journal of Sound and Vibration 111: 
515-8. 

[7] Cheung, Y. K., Chen, S. H., and Lau, S. L. 1991. “A 
Modified Lindstedt-Ponicare Method for Certain Strongly 

Nonlinear Oscillators.” International Journal of 
Nonlinear Mechanics 26: 367-78. 

[8] Qaisi, M. I. 1996. “A Power Series Approach for the 
Study of Periodic Motion.” Journal of Sound and 

Vibration 196: 401-6. 
[9] Liao, S. J., and Chwang, A. T. 1998. “Application of 

Homotopy Analysis Method in Nonlinear Oscillations.” 
Journal of Applied Mechanics Transactions of the ASME 

65: 914-22. 
[10] Joubari, M. M., Jouybari, H. J., and Ganji, D. D. 2012. 

“Nonlinear Vibration Analysis of a Cantilever Beam with 
Nonlinear Geometric.” Journal of Mechanical Research 

and Application 4 (3): 11-7. 
 


