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This paper studied cardinality constrained portfolio with integer weight. We suggested two optimization models 

and used two genetic algorithms to solve them. In this paper, after finding well matching stocks, according to 

investor’s target by using first genetic algorithm, we gave optimal integer weight of portfolio with well matching 

stocks by using second genetic algorithm. Through numerical comparisons with other feasible portfolios, we 

verified advantages of designed portfolio with two genetic algorithms. For a numerical comparison, we used a 

prepared data consisted of 18 stocks listed in S & P 500 and numerical example strongly supported the designed 

portfolio in this paper. Also, we made all comparisons visible through all feasible efficient frontiers. 
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Introduction 

Stock investment goes with the risk caused by changes of prices that is one of the characteristics of capital 

market. Portfolio optimization deals with the problem of allocating one’s capital to different assets to reduce 

risk while increasing returns. Many studies on portfolio optimization have been done so far. Modern portfolio 

theory is representative of them that is composed of Markowitz’ portfolio theory published in 1952 and Capital 

Asset Pricing Model introduced by Sharpe (Amenc & Le Sourd, 2003). Markowitz (1952) introduced return 

and variance (risk) as estimates of portfolio and suggested return and risk calculation formula. In the context of 

a portfolio, variance is the volatility of an asset or group of assets. Larger variance value indicates greater 

volatility (Amenc & Le Sourd, 2003). Covariance is used for representing how two assets are related, i.e., how 

closely returns of two assets move together (Reilly, 1989). 

In 1958, James Tobin showed the “Efficient Frontier” and “Capital Market Line” based on Markowitz’s 

works (Reilly & Brown, 1997). All portfolios on the efficient frontier are optimal compared to other feasible 

portfolios. The efficient frontier can be described by the curve in the risk-return space with the highest expected 

rates of return for each level of risk. Sharpe ratio was introduced to compare a portfolio with others. Sharpe 
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ratio is a tangent line with efficient frontier of portfolio and tangent point is optimal portfolio. The higher the 

ratio is, the better its risk adjusted performance (Pedersen, 2014). 

Recent decades’ mean-variance models were expanded by adding reasonable constraints, such as 

cardinality, quantity, pre-assignment, round lot, class constraint, and transaction cost. Some works require 

strictly K assets to be included in a portfolio (Chang, Meade, Beasley, & Sharaiha, 2000; Fernandez & Gomez, 

2007; Jin, Qu, & Atkin, 2014; Woodside-Oriakhi, Lucas, & Beasley, 2011; Xu, Zhang, Liu, & Huang, 2010), 

while some others use relaxed version (Ruiz-Torrubiano & Suarez, 2010; Schaerf, 2002). Some scholars 

included the round-lot constraint into portfolio optimization (PO) problems, which makes it more difficult to 

find a feasible solution. Some of these were measured in units of money (Bonami & Lejeune, 2009; Golmakani 

& Fazel, 2011; Kellerer, Mansini, & Speranza, 2000; Lin & Liu, 2008; Mansini & Speranza, 1999; Speranza, 

1996), while others imposed that the continuous weight variables should be an integer multiple of a given 

fraction (Golmakani & Fazel, 2011; Skolpadungket, Dahal, & Harnpornchai, 2007; Streichert, Ulmer, & Zell, 

2004). Some of them included transaction cost at the same time. In Mansini and Speranza (1999), it showed 

that a PO problem with minimum lot and without any fixed transaction cost is NP-complete. 

When all practical constraints have been included in the mathematical model, PO problem has been 

rendered to be complex for direct solving by traditional numerical approaches (Chang et al., 2000; Hajinezhad, 

Eatiy, & Ghanbariy, 2013; Fernandez & Gomez, 2007; Jansen & van Dijk, 2002; Lin & Liu, 2008; Thein, 2015; 

Skolpadungket, 2013; Ruiz-Torrubiano & Suarez, 2010; Schaerf, 2002; Skolpadungket et al., 2007; Speranza, 

1996; Woodside-Oriakhi et al., 2011; Li, 2015). Many scholars had proposed heuristics algorithms, such as 

genetic algorithm (GA) (Chang et al., 2000; Lin & Liu, 2008; Skolpadungket et al., 2007; Li, 2015), tabu 

search (TS) (Chang et al., 2000; Schaerf, 2002), simulated annealing (SA) (Chang et al., 2000; Gilli & Këllezi, 

2000; Kellerer & Maringer, 2001), and neural network (NN) (Fernandez & Gomez, 2007) to give a solution to 

PO problems with practical constraints. These methods generally fall under the class of adaptive optimization 

algorithms, which include genetic algorithm, tabu search, and simulated annealing, and have been used 

extensively to solve global optimization problems with arbitrary objective function and constraints (Murray, & 

Shek, 2012). Loraschi, Tettamanzi, Tomassini, and Verda (1995) studied for application of genetic algorithm in 

portfolio optimization problems. 

In this paper, we focus on the problem of giving a solution to general mean-variance portfolio with 

cardinality and integer weight constraints by using two genetic algorithms separately. Here, we imposed two 

practical constraints (cardinality and integer weight) together and improved an efficiency of portfolio by using 

two genetic algorithms. Also, we made all comparisons visible through efficient frontiers. 

Following this instruction, in Section 2, we present two model formulations for portfolio selection with 

cardinality and integer weight constraints. Section 3 describes two genetic algorithms that should be used in 

model optimizations. In Section 4, we gave numerical result to support our models and concluded this paper in 

Section 5. 

Portfolio Model With Cardinality and Integer Weight Constraints 

It is necessary to have a clear understanding about the general mean-variance model that was introduced in 

(Amenc & Le Sourd, 2003). General mean-variance model assumes that the rate of return of the stock follows 

normal distribution. In this sense, it is difficult to forecast the future rate of return because the rate of return is a 

random variable. There are expected rate of return and rate of risk (standard deviation) representing the 
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efficiency of portfolio investment. The Optimized Portfolio Model is simply said to maximize Sharpe ratio of 

return and variance (risk) and is defined as  
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In reality, however, there are alsoother factors which make investors to have several considerations to 

invest. Investors could face restrictions on investments in specific fields of the economy and limitations on 

number of stocks in investment. This needs to make it more practical. 

The only constraint of the Markowitz’s model (Amenc & Le Sourd, 2003) is that the total sum of the 

weight of portfolio investment must be 1.This insufficient condition raises some problems in reality. One of the 

problems is that it is difficult to convert weighted capital into an integer number of each asset against its price. 

In stock market, stocks are generally traded in integer number not percent. 

The other problem is transaction cost. Highly diversified portfolio causes high transaction cost because 

many numbers of stocks should be included in portfolio. In order to reduce transaction cost investor wants to 

limit number of stocks in portfolio, it is called as cardinality constraint. 

Cardinality and integer weight constraints are noted as 
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Where 
ii   and  are lower and upper bound, iz  is cardinality constraint, ix  is number of thi  

security, ip  is price of thi  security (Chang et al., 2000; Fernandez & Gomez, 2007). Here it is very 

important to find k-number of well-matching stocks in portfolio. Well-matching stocks means that stocks in 

portfolio are effectively correlated each other to minimize a variance of the portfolio for a given return on 

portfolio. It does not mean a group of k-number of the best stocks with highest return and lowest variance, but a 

group of k-number of effectively correlated stocks so that investors could achieve his own objective. In order to 
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solve this problem, we designed two models. First model is for well-matching stocks and second model is for 

integer multiplied optimal weight of portfolio with well matching stocks. So, we designed two models against 

previous studies. 
The first model is  

}1,10,1,)(),cov(min{ kiRrErr
iiiijiji cccccccc            (2-9) 

where R is desired expected return and ic  stands for ic  th stock and the solution of first model is 

},..,{ 21 kcccC  .
 

The second model is 
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where 
icl  is optimal integer weight of ic  th stock and 

icp  is the price of ic  th stock. 

This model suggests double optimization problem with the mixed quadratic and integer programing which 

typical numerical method could not give a solution. 

Portfolio Optimization Using Two Genetic Algorithms 

Portfolio selection model with cardinality and integer weight constraints is unable to be solved 

mathematically. In this section, optimal number of stocks will be calculated using genetic algorithm, afterwards, 

by using GA again optimal integer weight of portfolio will be found. 

GA enables to solve calculation-intensive mathematical problems in relatively short time period. 

GA is a type of optimization algorithm, meaning it is used to find the optimal solution to a given 

computational problem that maximizes or minimizes a particular function. GA represents one branch of the 

field of study called evolutionary computation, in that it imitates the biological processes of reproduction and 

natural selection to solve for the “fittest” solutions. 

GA includes the following fundamental construction factors: 

 Fitness function for optimization; 

 Set of chromosomes (populations); 

 Selection of chromosomes for regeneration; 

 Cross-over for the generation of new chromosomes; 

 Mutation for the generation of new chromosomes. 

In order to get the best solution in a short time, this paper generates two genetic algorithms and use one by 

one. 

The first genetic algorithm is for finding well-matching stocks and the second genetic algorithm is for 

searching integer optimal weights of well-matching stocks in portfolio. 

The genetic algorithm used in this paper consists of a bundle of the following seven components. 

GA ൌ ሺ ܨ, ܲ, ,ܯ ,ߔ ,߁ ,ߖ ܶሻ                               (3-1) 

Where F is a fitness function, ܲ is an initial population, M is a population size, Φ is a selection, Γ is a 

crossover, Ψ is a mutation, and T is the maximum evolution generation number. 
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Initial Population ࡼ 

In the first GA, a solution )...,( ,21 nxxxx   is represented by the chromosome )...,( ,21 ncccC  , where 

genes are restricted in nci 1  and NC . To generate random integer number within 1 to n, let us use 

equation below. 

)*)1(1int( randnci                               (3-2) 

where n is number of total stocks. 

In the second GA, a solution )...,( ,21 kxxxx   is represented by chromosome )...,( ,21 kcccC  , where 

genes are restricted in Ncandc iiiiii   ,, . To generate random integer number within 

ii and    , let us use equation below. 

)*)1(int( randc iii                               (3-3) 

where k is cardinality constraint. 

For all regeneration stages, integer converting function should be applied because all genes should be 

natural number. 

Fitness Function and Determination of Genetic Operators 

Fitness function for the first GA is Equation (2-9) that is 

}1,10,1,)(),cov(min{ kiRrErr
iiiijiji cccccccc        

where R is desired expected return of portfolio. 

For the second GA, the fitness function is (2-10) that is 
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where 
icp  is the price of ic  th stock. 

Three operators including selection, crossover, and mutation were applied in genetic algorithm. The 

selection operator leaves good members and removes bad members from population, and it helps ensure good 

members to next generation. In general, probability of each member being selected is the ratio of fitness of the 

member to total sum of all member fitness values. Hence, the probability of the member which has low fitness 

value being selected is low and it hardly participates in the next calculation. 

Determination of Hyper Parameters 

This paper used four hyper parameters M, Pc, Pm, and T were used to control the flow of genetic algorithm. 

There is no specific function or way to set these values. These values were determined freely or by having 

several experiments considering several factors. 

Size of population M has an impact on calculation speed, efficiency and the variety of population. If the 

size is small, the calculation speed can become faster but the variety of population become lower and the algorithm 

could not get optimal solution. Conversely, if the size is too big, the efficiency of the calculation could be low. 

Crossover probability Pc has the decisive influence on capability and speed of generating new members. 

The bigger the crossover probability is, the more members are generated but the higher the probability of 

dominant pattern being destroyed. 
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The mutation probability Pm controls the capability of generating members and T is number of 

generations that also have an impact on calculation speed. 

Numerical Example for Comparison 

Let us assume that we make k = 4 cardinality and integer weight constrained portfolio with 18 number of 

stocks listed in S & P 500. Table 1 shows statistic data about monthly expected return and variance of 18 stocks 

returns from October 2011 to September 2015. In this example, proportional transaction cost is 0.002 (see 

Table 5 for original data of 18 stocks). 

According to individual Sharpe ratio ranks of 18 stocks in Table 1 when cardinality constraint k = 4, the 

best stocks are VF, GD, BLL, and CLX that is C = [10, 1, 18, 16]. Now, let us see the result of GA for 

searching well matching stocks. 

In the GA number of variables is 4, so we generate chromosome with four genes and fitness function is  
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where genes 
ic  and jc stand for which stocks are. This GA gave a solution C = [1, 8, 10, 16]. As a result of 

GA, Portfolios 1 and 2 are almost the same except for 8th and 18th stock. 
 

Table 1 

Monthly Expected Return and Variance of 18 Stocks Listed in S & P 500 (2011.10-2015.9) 

No. Name of stocks Price of stock Expected return Variance on return Sharpe ratio Rank 

1 GD 140.0407 0.019342 0.039244 0.492856 2 

2 ORCL 36.71993 0.005367 0.039989 0.134205 13 

3 JCI 37.05637 0.011933 0.03399 0.351082 7 

4 BBY 37.16841 0.014217 0.101684 0.139812 12 

5 BBBY 60.80896 0.001802 0.045993 0.039182 17 

6 BAC 15.82756 0.021756 0.068852 0.315987 9 

7 ADI 55.8169 0.012513 0.043994 0.284415 10 

8 APPL 112.884 0.016802 0.064413 0.260849 11 

9 VLO 60.10108 0.029431 0.085223 0.345342 8 

10 VF 70.66012 0.017796 0.03592 0.495434 1 

11 QCOM 54.42233 0.002577 0.040685 0.063343 15 

12 PBI 20.09741 0.002973 0.065893 0.045117 16 

13 ESRX 83.19615 0.017648 0.049481 0.356658 6 

14 DUK 69.36038 0.003525 0.034116 0.103322 14 

15 CVX 77.21582 -0.00309 0.042288 -0.07316 18 

16 CLX 112.2899 0.01126 0.027872 0.404 4 

17 CAH 81.8494 0.014273 0.038415 0.371543 5 

18 BLL 65.12827 0.015885 0.034648 0.458477 3 
 

Table 2 shows Sharpe ratio of three feasible portfolios without transaction cost. Portfolio 1 consists of 

stocks with high individual Sharpe ratio, Portfolio 2 has stocks searched by GA for maximum Sharpe ratio, and 

Portfolio 3 is made with all stocks. According to correct calculation for Sharpe ratio of two portfolios, Portfolio 

1 is better than Portfolio 2, because GA can find approximate answer rather than correct one. And also, Table 2 
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shows that Portfolio 3 with all stocks has best maximum Sharpe ratio, but on the contrast, Table 3 and Figure 1 

show that Portfolio 3 has worst maximum Sharpe ratio because of transaction cost. 
 

Table 2 

Sharpe Ratio of Portfolios 1, 2, and 3 Without Transaction Cost 

 Portfolio 1 Portfolio 2 Portfolio 3 

Sharpe ratio 0.7477 0.7164 0.7650 
 

Table 3 

Sharpe Ratio of Portfolios 1, 2, and 3 With Transaction Cost 

 Portfolio 1 Portfolio 2 Portfolio 3 

Maximum Sharpe ratio 0.7307 0.6693 0.6491 

Return (min.-max.) 0.0133-0.0171 0.0125-0.0173 0.0082-0.0257 

Standard deviation 0.0199-0.0286 0.0205-0.0340 0.0178-0.0852 
 

Obviously, Portfolio 1 has the best maximum Sharpe ratio, but it could not make a portfolio within wider 

range of return and risk than other two portfolios. If investor wants to allocate his capital into four assets for 

monthly expected return 0.015, above Portfolios 1 and 2 could not give a solution so that he should find another 

portfolio with four assets by using GA. At that time, fitness function of the GA is defined as 

    NccccrErrw jijiccccc ijiji
,,18,,015.0)(),cov(min  1           (4-2) 

 
Figure 1. Efficient frontiers without transaction cost. 

 

Where icgens  and jc stand for which stocks are. This GA gives a solution C = [1, 5, 9, 16], i.e., GD, 

BBBY, VLO, and CLX. 
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Figure 2 shows that, at the desired expected return 0.015, Portfolio 3 is better than Portfolio 4. 
 

 
Figure 2. Efficient frontiers of portfolios with transaction cost. 

 

After we find desired assets for portfolio, we have to find optimal integer weight for the portfolio by using 

second model. Let us find optimal integer weight for the Portfolio 3 with GD, BBBY, VLO, and CLX. 

The fitness function of GA is  
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where solution icl  stands for integer weight for ic  th stock. 

Table 4 shows optimal integer weight for Portfolio 3 with 0.015 of monthly expected return according to 

maximum Sharpe ratio. 
 

Table 4 

Optimal Integer Weight for Portfolio 3 

No( ic ) Name of stock Price Integer weight Weight (%) 

1 GD 140.0407 65 44.84 

5 BBBY 60.80896 4 1.20 

9 VLO 60.10108 44 13.03 

16 CLX 112.2899 74 40.93 
 

Table 5 

Original Data on Monthly Returns of 18 Stocks Listed in S & P 500 (2011.10-2015.9) 

Month GD (%) ORCL (%) JCI (%) BBY (%) BBBY (%) BAC (%) ADI (%) APPL (%) VLO (%) 

2015/9 -5.37  -4.89  -4.84  14.67  -3.40  -7.58  -2.71  -0.46  -7.15  

2015/8 1.44  -3.42  -1.57  -2.37  -6.98  -2.28  -6.40  -9.52  -1.25  
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Table 5 to be continued 

2015/7 2.51  -6.74  -5.46  -3.30  -3.51  1.62  -8.43  -2.06  10.61  

2015/6 1.85  -2.51  -0.03  -2.75  -1.70  4.60  4.24  -0.59  0.41  

2015/5 4.05  1.44  -5.45  -4.59  -2.81  5.33  1.50  1.08  0.04  

2015/4 -0.72  0.37  -0.88  -7.55  -2.24  -1.28  7.13  0.90  -2.46  

2015/3 -2.49  -0.74  0.87  5.88  -2.33  -2.24  4.39  0.84  4.70  

2015/2 0.69  0.13  -0.61  3.22  1.77  0.08  4.67  12.91  19.07  

2015/1 -2.61  0.66  -1.48  -2.63  2.54  -7.34  -3.74  -1.56  -0.52  

2014/12 -0.76  6.39  1.06  4.09  4.03  1.75  10.34  -0.45  -3.15  

2014/11 13.57  5.74  2.44  12.67  8.62  3.09  10.01  11.25  8.28  

2014/10 -0.86  -4.81  -5.85  -3.25  0.23  0.07  -7.20  1.05  -6.14  

2014/9 5.44  -0.93  0.73  9.65  3.59  7.17  -1.95  2.37  -5.46  

2014/8 2.10  0.45  -2.64  -1.72  3.51  -0.17  -4.18  2.75  5.78  

2014/7 -1.05  -2.90  0.37  6.10  0.50  0.72  -2.21  4.09  -8.98  

2014/6 4.42  0.38  6.33  11.16  -2.11  3.90  5.10  6.79  -3.14  

2014/5 5.01  3.56  1.49  1.50  -5.48  -8.42  -2.39  11.45  2.62  

2014/4 -0.46  3.55  -2.67  -0.97  -4.43  -5.59  1.88  1.33  3.03  

2014/3 3.98  2.90  2.99  4.93  4.78  4.18  3.89  1.34  8.14  

2014/2 8.09  -0.15  2.36  -21.04  -6.31  -1.18  1.36  -2.15  -3.73  

2014/1 5.47  5.94  5.15  -23.67  -10.82  7.60  -0.27  -4.00  8.44  

2013/12 3.30  3.18  4.01  -1.74  1.07  4.85  -0.23  6.93  11.44  

2013/11 2.10  4.31  4.67  3.27  0.36  4.49  5.19  3.90  13.34  

2013/10 0.12  -0.15  3.27  6.36  3.46  -1.29  -1.26  4.75  5.57  

2013/9 2.18  1.88  -0.34  16.47  -1.16  -0.63  -0.98  -0.66  -1.84  

2013/8 3.12  2.52  -1.16  11.38  0.14  3.26  1.23  13.04  3.38  

2013/7 6.16  -3.54  5.13  7.34  7.81  7.08  4.91  0.48  -7.25  

2013/6 1.83  -3.31  -1.28  4.06  0.95  -0.28  -1.04  -4.43  -4.80  

2013/5 10.29  4.15  6.56  10.04  4.78  8.56  4.45  6.32  0.90  

2013/4 0.27  -5.48  -0.21  14.43  7.83  -0.91  -3.78  -4.99  -9.22  

2013/3 3.77  -1.17  1.26  28.07  4.57  3.92  0.43  -3.42  -1.17  

2013/2 -5.50  0.29  2.44  15.49  2.62  0.98  5.63  -8.25  23.40  

2013/1 3.27  6.64  5.91  16.14  -0.98  7.14  3.45  -6.33  12.16  

2012/12 4.41  6.16  4.59  -14.01  -1.13  13.32  3.53  -5.78  9.91  

2012/11 -2.36  -1.16  -0.59  -18.18  -4.47  3.03  3.10  -11.17  -0.18  

2012/10 1.03  -3.33  0.73  -4.04  -8.84  4.30  -2.99  -6.66  -5.68  

2012/9 2.53  2.56  -1.49  -3.84  3.29  13.59  0.48  6.18  9.63  

2012/8 0.20  5.60  7.22  -3.65  4.93  4.24  7.24  6.99  16.34  

2012/7 1.36  8.42  0.22  -1.12  -9.62  -1.21  0.81  4.48  12.23  

2012/6 -3.13  0.78  -3.60  -0.31  -3.41  2.00  0.38  1.61  -0.68  

2012/5 -6.02  -5.92  -1.00  -11.54  2.02  -14.98  -4.07  -6.95  -8.11  

2012/4 -3.74  -2.53  3.60  -12.36  7.62  -1.91  -2.60  5.36  -9.69  

2012/3 2.32  3.14  5.18  1.01  6.68  12.66  -0.66  16.20  8.90  

2012/2 1.16  4.25  3.26  1.84  -1.02  18.09  4.52  15.78  12.48  

2012/1 7.61  -5.01  5.28  -1.37  0.44  23.01  7.90  9.08  4.34  

2011/12 2.28  -7.37  1.51  -7.30  -0.27  -8.40  -0.34  1.94  -9.79  

2011/11 2.81  0.46  4.80  6.70  1.93  -6.40  1.04  -2.88  5.50  

2011/10 7.17  5.97  5.00  5.07  1.60  1.89  8.69  1.77  21.02  

Month VF QCOM PBI ESRX DUK CVX CLX CAH BLL 

2015/9 -5.13  -10.13  -2.28  -4.60  -6.81  -5.27  -2.25  -2.40  -4.60  
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Table 5 to be continued 

2015/8 1.87  -4.27  -1.56  -4.00  1.53  -12.89  5.04  -1.37  -2.23  

2015/7 4.41  -5.58  -4.05  2.76  0.65  -6.75  3.03  -3.57  -2.56  

2015/6 -1.49  -3.58  -4.07  1.23  -4.60  -5.91  -1.94  1.36  -1.24  

2015/5 -4.59  1.57  -2.34  1.09  -1.97  -1.94  -1.30  -3.27  0.34  

2015/4 -0.22  -2.27  1.09  3.42  2.70  4.00  -0.03  0.90  2.51  

2015/3 2.46  0.69  0.87  -0.61  -7.38  -4.10  1.08  3.73  -1.35  

2015/2 0.08  -3.24  -5.10  -0.04  -5.32  2.12  1.34  3.90  9.38  

2015/1 -1.40  -1.78  -2.30  0.50  4.37  -2.45  5.05  1.39  -4.14  

2014/12 3.51  1.80  -0.60  5.98  2.55  -6.23  1.31  2.00  4.90  

2014/11 8.50  -3.16  2.90  9.82  3.23  1.50  3.26  5.58  1.06  

2014/10 -0.03  -1.77  -8.32  -2.18  5.79  -7.39  6.54  0.50  -0.93  

2014/9 5.08  0.83  -1.37  0.88  2.54  -2.47  3.39  4.75  3.23  

2014/8 0.61  -5.02  -3.06  7.76  -0.86  -2.95  -2.98  1.50  -0.56  

2014/7 -0.74  -0.68  -0.82  -3.45  1.62  2.88  0.60  2.14  3.41  

2014/6 0.74  -0.37  4.15  2.01  -0.17  2.60  2.47  4.78  3.80  

2014/5 3.25  0.53  3.50  -5.37  -0.85  2.58  -1.08  -3.41  6.51  

2014/4 -1.46  2.71  -0.13  -5.66  3.34  4.57  2.34  -4.57  1.28  

2014/3 5.32  3.05  2.26  2.55  -1.20  2.54  0.94  3.51  1.59  

2014/2 -3.41  1.63  8.25  3.05  3.72  -5.77  -3.25  3.01  5.85  

2014/1 0.91  0.67  2.88  6.89  -1.26  -2.07  -4.26  2.45  0.60  

2013/12 6.30  3.80  -0.38  4.49  -3.26  1.24  1.80  3.81  1.30  

2013/11 10.32  3.98  16.23  3.78  3.22  1.43  7.79  15.62  8.05  

2013/10 3.44  -1.00  11.71  -1.93  4.39  -3.36  2.33  5.13  2.12  

2013/9 1.04  3.23  0.73  -1.40  -3.09  1.76  -1.51  2.08  0.12  

2013/8 -1.38  7.22  19.47  -0.25  -1.73  -2.32  -1.00  3.73  1.81  

2013/7 4.96  0.05  -0.06  4.83  3.90  3.08  1.72  4.08  3.53  

2013/6 3.10  -3.96  -3.54  0.66  -6.04  -2.74  -2.59  1.24  -5.27  

2013/5 6.66  -0.84  1.98  8.17  -2.70  4.69  -2.04  8.33  -3.10  

2013/4 4.01  -1.91  1.03  -2.66  4.75  -0.76  3.49  -3.53  2.63  

2013/3 6.01  0.47  8.13  5.50  1.55  3.15  4.17  -1.57  1.33  

2013/2 3.45  2.36  13.72  1.76  4.11  2.05  7.00  4.27  -2.44  

2013/1 -1.16  2.82  8.99  0.75  3.11  5.12  1.50  5.05  3.50  

2012/12 -3.81  1.72  -7.34  0.40  3.37  1.87  1.84  3.63  1.08  

2012/11 -2.27  2.48  -15.41  -15.10  -4.30  -7.35  0.07  -2.03  3.73  

2012/10 2.31  -4.72  -2.27  1.03  0.94  -1.27  2.52  5.73  -0.74  

2012/9 5.08  2.31  4.85  4.22  -3.64  3.21  -0.18  -3.36  1.90  

2012/8 5.68  9.28  -1.92  6.71  -0.04  4.92  -0.83  -5.97  2.00  

2012/7 1.86  -0.22  -4.03  6.78  -2.72  5.81  1.74  2.43  0.28  

2012/6 -2.10  -5.97  -2.97  -1.22  5.82  -0.75  4.11  -1.25  1.61  

2012/5 -4.52  -8.24  -13.08  -5.94  3.55  -2.12  -1.49  1.04  -6.04  

2012/4 0.92  0.51  -5.35  6.49  -0.64  -4.51  2.24  -0.56  5.33  

2012/3 4.47  5.33  -2.68  3.34  -0.87  1.87  -0.46  -0.40  1.98  

2012/2 6.52  8.45  -3.58  3.39  -0.75  -0.24  0.14  0.36  6.26  

2012/1 -0.04  5.37  3.53  11.23  0.96  2.98  4.15  1.80  7.14  

2011/12 -0.87  -1.36  -1.68  0.28  3.77  2.10  0.92  -3.85  2.41  

2011/11 1.81  5.50  -5.68  11.34  1.61  1.53  -3.27  1.55  1.92  

2011/10 5.36  4.08  3.97  6.03  0.03  7.16  0.59  -1.76  6.96  
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Figure 3 shows how efficient two genetic algorithms work. 
 

 
Figure 3. Efficiency of gas. 

Conclusion 

This paper classified cardinality constrained portfolios as investors’ preferences among Sharpe ratio and 

expected return and gave solutions to each model by using GA. Our research gave all efficient frontiers to all 

suggested models and compared with each other. 

First, we verified that the portfolio with all stocks obviously has more advantage than cardinality 

constrained portfolio, but in reality, cardinality constrained portfolio is better than total one because of 

transaction cost. Investors should compose his portfolio with the desired number of stocks to reduce transaction 

cost. 

Secondly, we suggested how to choose which stock should be included in portfolio in terms of investor’s 

target. As shown in this paper, when investor wants the portfolio with the best maximum Sharpe ratio, he 

simply consists of desired number of stocks with the best individual Sharpe ratio that it has an advantage in 

calculation time. However, if investor’s target is certain return or risk, at that time heuristic algorithms should 

be used for finding desired stocks. In this paper, simple GA was used and worked well. 

Finally, we optimized design portfolios by using another GA. When using GA, we use Sharpe ratio as 

fitness function to find optimal integer weight of each portfolio. Invested money in each stock is the integer 

times of stock price. Investors should consider integer weight when optimizing portfolio because stocks are 

traded in integer number not percent. In order to get a solution of integer weighted portfolio, we used another 

GA for finding well-matching stocks 

GA for optimizing integer weight
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GA that fitness function is Sharpe ratio in purpose of simplicity. We examined all genetic algorithms in this 

paper worked well.  
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