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Continuous-Time Models for Firm Valuation and Their 

Collateral Effect on Risk-Neutral Probabilities and 

No-Arbitraging Principle∗ 
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Extensions of Merton’s model (EMM) considering the firm’s payments and generating new types of firm value 

distribution are suggested. In the open log-value/time space, these distributions evolve from initially normal to 

negatively skewed ones, and their means are concave-down functions of time. When payments are set to zero or 

proportional to the firm value, EMM turns into the Geometric Brownian model (GBM). We show that risk-neutral 

probabilities (RNPs) and the no-arbitraging principle (NAP) follow from GBM. When firm’s payments are 

considered, RNPs and NAP hold for the entire market for short times only, but for long-term investments, RNPs 

and NAP just temporarily hold for individual stocks as far as mean year returns of the firms issuing those stocks 

remain constant, and fail when the mean year returns decline. The developed method is applied to firm valuation to 

derive continuous-time equations for the firm present value and project NPV. 

Keywords: firm present value, geometric Brownian (Structural) model, risk neutral probabilities, no-arbitrage 

pricing principle 

Introduction  
Valuation of assets generating long-term cash flows is one of the central problems of financial economics. 

This valuation uses two main ideas: the time value of money and a rational choice of the expected rate of 
returns corresponding to asset risks. Among such assets, one can find business projects, firms, bonds, stocks, 
etc. At that, the cash flow of returns is considered as a stochastic process, characterized by its volatility, but all 
payments are assumed to be regular functions of time. For example, the project net present value calculated as a 
discrete process (e.g. Brealey & Myers, 1996, p. 35) is 

ܸܰܲ ൌ ܨܥܨ  
௧ܨܥܨ

ሺ1  ௧ሻ௧ݎ
௧ୀଵ

 (1)

௧ܨܥܨ  ൌ ۄ௧݊ݎݑݐܴ݁ۃ െ ௧ܲ (1a)
here FCFt, t = 1, 2, 3… is a free cash flow, ݊ݎݑݐܴ݁ۃ௧ۄ is a dollar value of expected returns, Pt—payment, all 
at year t. FCF0< 0 is an initial investment in the project (a down payment), rt is the expected rate of returns at 
year t corresponding to the cash flow volatility. The term FCFt(1 + rt)- t recalculates the free cash flow FCFt at 
year t to its value at t = 0. When the mean returns, payments, and expected rate of returns are constant: 
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ۄ௧݊ݎݑݐܴ݁ۃ ൌ  Pt= P, rt= r, then Equation (1) turns into ,ۄ݊ݎݑݐܴ݁ۃ 

ܸܰܲ ൌ ܨܥܨ    
ܨܥܨ

ሺ1  ሻ௧ݎ

∞

௧ୀଵ

 

However, a fixed free cash flow FCF means that the project value grows linearly. The natural economic 
growth is exponential; so, a better equation is 

௧ܨܥܨ ൌ ௧ିଵሺ1ܨܥܨ   ሻߙ ൌ ଵሺ1ܨܥܨ    .ሻ௧ߙ
This FCFt value with constant α and r (α < r) leads to another equation for NPV 

ܸܰܲ ൌ ܨܥܨ  ଵܨܥܨ  ൬
1  ߙ
1  ൰ݎ

௧∞

௧ୀଵ
ൌ ܨܥܨ  ଵܨܥܨ

1  ݎ
ݎ െ (2) ߙ

NPV estimate (2) is consistent with a continuous-time geometric Brownian model (GBM) for the project 
development: 

ௗ


ൌ ݐ݀ߙ  ݀ܥ ௧ܹ, X(0) = X0 , (3)

here Xt is a random project value at year t, α—the expected rate of returns, C is the Xt-volatility, and Wt is a 
Wiener process; α and C are constants. A variable z = ln(Xt/X0) follows a standard diffusion process starting at 
point z = 0: 

௧ݖ݀ ൌ ݐܴ݀  ݀ܥ  ௧ܹ, z(0) = 0, R = α – C2/2.                       (4) 
The process zt has a normal distribution ܰ൫ݖۃ ;ݖ௧ۄ,  ሻ൯ with its mean and varianceݐሺݎܽݒ

ۄ௧ݖۃ ൌ ሻݐሺݎܽݒ ,ݐܴ  ൌ  ݐଶܥ
௧ܨܥܨ  ൌ ۄ௧ܺۃ െ ۄ௧ିଵܺۃ ൎ ሺ1ۄ௧ିଵܺۃ   , ሻߙ

ۄ௧ܺۃ ൌ ܺexp ሾݖۃ௧ۄ  ௧/2ሿݎܽݒ  ൌ  ܺexp ሺݐߙሻ . 
Equation (2) and its logarithmic equivalent (3) include no payment, while Equation (1a) shows that the 

payments are allegedly considered. This conflict indicates an internal inconsistency of Equation (2) to be 
resolved; we shall do it in Section 1. For the diffusion processes (3) or (4), one has an identity used in Equation 
(1a) 

௧ݏ݊ݎݑݐܴ݁ۃ െ ௧ܲۄ ൌ ۄ௧ݏ݊ݎݑݐܴ݁ۃ  െ ௧ܲ  
Later we show that when one takes systematically into account the firm’s payments, this equality does not 

hold and Equation (2) is wrong. It is impossible to improve it remaining within the GBM frames. Equation (2) 
also supposes an infinite project’s time horizon, which is absurd. What factors determine the time horizon of 
the project, and how long it is, these questions make another objective of our study. The last introductory 
remark is about volatility. Traditionally, volatility is denoted as σ. However, later we will consider z0 not as a 
point but as a normally distributed ensemble of Brownian particles with the mean ݖۃۄ ൌ   and varianceܪ 
ሻݖሺݎܽݒ ൌ ߪ 

ଶ: 
ۄ௧ݖۃ  ൌ ܪ   ሻݐሺݎܽݒ , ݐܴ ൌ ߪ 

ଶ   . ݐଶܥ
To distinguish between the variance and volatility, we denote volatility as C reserving symbol σ for the 

standard deviation. The expected rate of returns in Equation (2) depends on the time-invariant volatility rt= r(C), 
which is also consistent with Equation (3). 

Similar equations describe the firm, bond, and stock values. For the firm value, one has 
ܸܲሺ݂݅݉ݎሻ ൌ ܸܲሺ݂ݓ݈݂ ݄ݏܽܿ ݊ܽ݁݉ ݁݁ݎሻ ൌ ܸܲሺ݉݁ܽ݊ ݏ݁ݑ݊݁ݒ݁ݎ െ ݏݐݏܿ െ  .ሻݏݐ݊݁݉ݐݏ݁ݒ݊݅
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For a free cash flow of the form  ܨܥܨ௧ ൌ ۄ௧ܺۃ െ ۄ௧ିଵܺۃ ൎ ሺ1ۄ௧ିଵܺۃ   ሻ, α and r(C) are fixed, the firmߙ
present value is 

ܸܲ ൌ 
௧ܨܥܨ

ሺ1  ሻ௧ݎ

∞

௧ୀଵ
ൌ 

ଵሺ1ܨܥܨ  ሻ௧ߙ

ሺ1  ሻ௧ݎ

∞

௧ୀଵ
 (5)

One can see that the firm PV faces the same problems as the NPV estimate for the project (2). Equation (5) 
claims that it takes account of payments, but GBM (3) consistent with (5) does not include any payment at all; 
it indicates an internal inconsistency of Equation (5). 

The bond value is defined as a sum of the discounted cash flow of coupon payments at a time horizon of 
the bond maturity plus a discounted face value 

ܸ ൌ  
ܶܰܫ

ሺ1  ݇ௗሻ௧

ே

௧ୀଵ


ܯ
ሺ1  ݇ௗሻே (6)

where M is a bond face value, N is an interval of the bond maturity, INT is a constant nominal value of the 
coupon, kd = kd(C) is the expected rate of returns corresponding to volatility C. 

The stock value is estimated as a discounted flow of dividends 

௦ܸ ൌ ܸܲሺ݁݀݊݁݀݅ݒ݅݀ ݀݁ݐܿ݁ݔ ሻݓ݈݂ ൌ 
ܸܫܦ

ሺ1  ݇௦ሻ௧

∞

௧ୀଵ
 (7)

here DIV is a nominal dividend value, ks = ks (C), is the expected rate of returns corresponding to the volatility 
C. It seems that Equations (6) and (7) do not include any payment, and, therefore, they are free of the conflict 
specific for the project NPV and the firm PV. However, remembering that the stock value is just a known part 
of the firm value, and the bond value is a part of the firm’s debt, we conclude that Equations (6) and (7) are 
closely related to Equation (5), and they face the same problems. Equations (6) and (7) must be corrected to 

ܸ ൌ  
ሺ1ܶܰܫ െ ሻሻݐሺܦܴܲ

ሺ1  ݇ௗሻ௧

ே

௧ୀଵ


ሺ1ܯ െ ሺܰሻሻܦܴܲ
ሺ1  ݇ௗሻே  (6a)

௦ܸ ൌ 
ሺ1ܸܫܦ െ ሻሻݐሺܦܴܲ

ሺ1  ݇௦ሻ௧

∞

௧ୀଵ
 (7a)

where PRD(t) is the firm’s default probability at time t, INT(1 – PRD(t)) is the expected coupon value and 
DIV(1 – PRD(t)) is an effective dividend value. As in Equations (2) and (5), there is a question about the time 
horizon in Equation (7). The time horizon in Equation (7a) is governed by the default probability PRD(t). In 
other words, one must find the firm value distribution, and then the default probability as a function of time and 
parameters of the firm and its environment. So, to answer the questions raised in the paper, one has to consider 
the firm valuation problem. There is a vast literature on estimations of the bond and stock values, we discuss 
some articles in our literature review, but we do not consider details of the valuation of bonds or stocks in our 
study. 

Since the 1970s, the continuous-time diffusion models introduced by Black and Scholes (1973) and 
Merton (1974) estimate the values of options, firms, bonds, stocks, etc. Black and Scholes, in their classic 
option pricing study, use GBM (3) that leads to the lognormal distribution of option prices. Merton (1974), 
estimating the price of a zero-coupon bond of a given maturity issued by the firm that defaults when the asset 
value of the firm is less than the outstanding debt at the time of debt maturity, introduces an equation taking 
account of debt and dividend payments. However, instead of solving this equation, he puts forward the famous 
Option hypothesis saying “While options are highly specialized and relatively unimportant financial 
instruments [...] the same basic approach could be applied in developing a pricing theory for corporate 
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liabilities in general” (Merton, 1974, p. 449). This hypothesis allows him to be satisfied with the GBM-solution 
which is, of course, identical to the Black-Scholes solution. Merton has interpreted this identity as a proof of 
the general validity of his option hypothesis. 

Now the Option hypothesis dominates worldwide in the financial community. For example, Strebylaev 
and Whited (2012, pp. 4-5), reviewing the development of dynamic structural models, state that “they (dynamic 
structural models) start with the acknowledgment that any claims on corporate cash flow streams are 
derivatives on underlying firm value or firm cash flows. This means that we can apply option pricing methods 
to value these claims.” Black and Cox (1976) improve the Merton model introducing a threshold triggering 
default when the firm’s assets hit the threshold. Since that time, the structural model becomes the most popular 
instrument of study in different fields of economics and finance. Sundaresan (2013, p. 21) declares that “since 
its publication, the seminal structural model of default by Merton (1974) has become the workhorse for gaining 
insights about how firms choose their capital structure, a “bread-and-butter” topic for financial economists.” 
Numerous GBM modifications are used in plenty of papers studying various aspects of corporate development 
such as a search for the optimal capital structure (Leland, 1994; Leland & Toft, 1996; Leland, 2006; etc.), 
dynamic methods of the debt control (Goldstein et al., 2001; Strebulaev, 2007; Titman & Tsyplakov, 2007; 
Hugonnier et al., 2015; etc.), analysis of the relation between the macroeconomic state of the economy and the 
intensity and scale of defaults (Chen, 2010; Bhamra et al., 2010; etc.), investigation of the dependence between 
the firm’s investment decisions and its financing decisions (Barclay & Smith, 1995; Barclay, Smith, & 
Morellec, 2006; etc.), and many others. Further examples of the application of the structural models one can 
find in comprehensive reviews of Strebulaev and Whited (2012), Laajimi (2012), and Sundaresan (2013). 
Because the normal distribution is a solution of the standard diffusion equation about the firm value, and the 
lognormal one is a solution of the same equation about the log-value, these two distributions have a lot of 
remarkable properties such as: (a) a time-sequence of the calibrated firm’s stock prices makes a martingale, (b) 
there exists a risk-neutral (or martingale) measure and risk-neutral probabilities significantly simplifying the 
analysis of the firm’s credit risks and default, and (c) a market with martingale prices is the no-arbitraging 
market (Cox et al., 1979; Harrison & Kreps, 1979; Harrison & Pliska, 1981). 

However, the default probabilities predicted by GBM occur much lesser than the default frequencies 
observed in practice; it means that the real log-value distribution has heavy tails, or is negatively skewed. Since 
the end of the 1980s, theoretical studies on the firm value distribution and default probabilities split into two 
directions. The jump-diffusion processes (JDPs) supplementing GBM with Poisson jumps in the firm value make 
the first (e. g. Zhou, 2001; Hilberink & Rogers, 2002; Kou, 2002; Chen & Kou, 2009). The jumps allegedly 
represent a market reaction to new information about the firm, and dominating leaps down provide for desired 
negative skewness to the firm value distribution. Estimation of constant jump parameters, their intensity and 
mean length, makes a specific problem usually resolved with calibrated models (Leland, 2006). 

Giesecke and Goldberg (2008) use a structural model of credit risk to show that informational asymmetries 
can induce an event premium for the abrupt changes in security prices that occur at default. If the public investors 
are unable to observe the threshold asset value at which the firm’s management liquidates the firm, then they face 
an abrupt default risk as they cannot discern the firm’s distance to default. Technically the authors suggest 
another kind of JDP adding an extra jump risk to a low GBM risk. To apply the martingale technique to solving of 
the problem, Giesecke and Goldberg use GBM supplemented with jumps in the firm value to a default line whose 
location is random. Random leaps to the default line simulate an unexpected occurrence of the firm’s default. 
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However, this unexpected default can be explained by the difference between the real high default probability 
and its low GBM estimate used by investors as well as the firm’s management. In this case, both public investors 
and the firm’s management use the same information about the firm and are almost equally unpleasantly 
surprised by the firm’s default. Both types of JDP models supplement GBM with jumps in the firm value, 
although, as one believes, the leaps have different causes: an appearance of new information about the firm (Zhou, 
2001; Hilberink & Rogers, 2002; Kou, 2002; Chen & Kou, 2009), or informational asymmetries between public 
investors and firm’s management (Giesecke & Goldberg, 2008). Both types are equally far from reality because 
any firm has compulsory payments, which JDP models neglect. As we show further, the real log-value 
distribution is negatively skewed having a growing left tail. No JDPs with fixed statistical jump parameters can 
provide for the growing left distribution tail. 

The second group of theoretical models aimed to achieve default probabilities comparable with the default 
frequencies observed in practice consists of stochastic volatility processes providing for symmetric distributions 
with heavy tails (e.g. Hull & White, 1987; Melino & Turnbull, 1990; Nicolato & Venardos, 2003). This group 
of models is mainly used for option pricing and is not considered here. 

So-called calibrated models demonstrate another attempt to take heuristic account of the distribution 
skewness. We show the shortcomings of this type of model on the example of Moody’s KMV (Bohn, 2006). To 
introduce negative skewness to the log-value distribution, the model uses an extensive database of real defaults 
for estimating default probabilities and the loss distribution at a time horizon of one year. The model applies to 
publicly traded firms for whom market values are known. To determine a firm’s current state, the model uses 
GBM to calculate the distance-to-default (DD) as a height of the log-value mean over a default line measured in 
standard deviations. Then using the database, the model determines a share of firms with that DD who have 
defaulted within a year. This share has got the name of Expected Default Frequency (EDF) and is a rough 
estimate of the intensity of default probability (IPD, see Section 1) at a distance of one year. Despite its 
popularity, the model suffers from serious drawbacks typical for calibrated models. First, the assumption that 
EDF is a function of DD only is far from reality. Two firms having the same DD at some time can have 
different IPD values because the firm value distribution depends on parameters of the firm and its business 
environment (the debt leverage, interest rate, inflation rate, taxation rate, etc.). Second, for credit risk estimation 
objectives, a creditor wants to know the probability of borrower’s default at a horizon of the credit maturity, 
which can achieve decades while Moody’s KMV works at the time horizon of one year only. The natural 
conclusion from all said above is we need a more accurate and precise model for the firm value distribution. 

In this paper we take an attempt to present two such models (we call them the First and the Second 
extended Merton models, or EMM1 and EMM2 for short) taking account of the firm’s payments and breaking 
off any connection with GBM following from the false Merton’s analogy between the firm and the option. We 
show that the EMM-firm and the GBM-firm have very different characteristics both at the firm level and at the 
market level. The GBM-firm remains “ever young”, keeping the time-invariant mean year returns and volatility 
and producing over optimistically low default probabilities. On the contrary, the EMM-firm by and by “grows 
old”: its mean year returns decrease after some time depending on the firm parameters, its volatility and 
negative skewness continuously grow contributing to the default probability. At the market level, the 
GBM-firms admit the time-independent risk-neutral measure, risk-neutral probabilities, and no-arbitrage 
pricing principle effective for the entire market. The market of the EMM-firms does not have a risk-neutral 
measure independent of time and for the whole market. However, each firm at the market can have its 
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risk-neutral measure for some time determined by parameters of the firm and its business environment. The 
implication from this is that the no-arbitraging property becomes a feature of the firm, holding only for some 
limited time. Risk-neutral probabilities exist as far as the mean year returns of the firm remain constant; thus, 
the risk-neutral approach is legitimate for safe firms only. One cannot use this approach for estimating credit 
risks and finding the firm’s default probabilities. 

The rest of the paper has the following structure. Section 1 presents a continuous-time model estimating 
the probability that a firm with continuous payments will meet in its development financial difficulties that 
bring about the firm’s default. We show that for the firm paying its compulsory expenses, the firm value 
distribution is negatively skewed, and reveal a dependence of the default probability on parameters of the firm 
and its business environment. Knowledge of a measure of the firm’s stability is necessary to its long-term 
investors, creditors, and also to the firm’s management planning long-term business operations. At the end of 
the Section, we give the continuous-time equation for the firm present value taking account of the firm’s 
payments. 

In Section 2, we present and solve EMM2 for the firm with discrete payments when the firm pays its 
compulsory expenses in a lump sum at the end of each year. The EMM2-firm and the EMM1-firm have very 
similar general properties at the individual (firm) level as well as at the market level. We show that the 
risk-neutral probabilities and no-arbitraging property remain invalid for both types of the firm’s payments, 
continuous or discrete. For both EMM1- and EMM2-firms, the risk-neutral default probabilities and 
no-arbitraging property become time-dependent characteristics of individual stocks and the firms issuing them, 
rather than the feature of the market as a whole. From a practical point of view, it means that long-term 
investors such as pension funds, mutual funds, banks, and big firms suffer unnecessary losses under the wrong 
impression of correctness of the GBM-estimations and the no-arbitraging principle. We show that the validity 
of the risk-neutral probabilities and no-arbitraging property does not depend on the type of the firm’s payments, 
continuous or discrete. In the end of this Section, we present results of computer modeling of the firm value 
distribution and its statistical moments for various initial conditions supporting our qualitative analysis 
(EMM1). 

Model Description 

In his seminal work, Merton (1974) introduces a continuous-time equation describing the firm value 
developing in a stochastic environment (the general Merton model): 

݀ܺ ൌ ሺߙܺ െ ܲሻ݀ݐ  )0(0 ,ܹ݀ܺܥ XX = , (1.1)

ܲ ൌ ܲܦ  (1.1a) ܸܫܦ
here X(t) is the firm market value at time t, constant μ is a rate of instantaneous expected returns on the firm per 
unit time, P is the total dollar payouts by the firm per unit time to either its shareholders or liabilities-holders 
(dividend DIV or interest DP payments) per unit time, constant C2 is the instantaneous variance of returns, W is 
a Wiener process representing a cumulative effect of normal shocks. (For the sake of consistency with the 
further discussion, we use our symbols for the variables and parameters in the model keeping the original 
Merton’s interpretation of symbols. One should note, however, that C2 is not the variance of returns, but the 
rate of variance growth and C is the process volatility.) 
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Merton solves a specific case of this equation with P = 0. For ܲ ൌ  ܺ, δ0≥ 0 is constant, Equation (1.1)ߜ
transforms into the geometric Brownian model, GBM: 

ሺ݀ܺሻ/ܺ ൌ ݐ݀ߣ    ,ܹ݀ܥ
⎩
⎨
⎧

=−
=

=
XP

P

000

0

,
0,
δδα

α
λ . (2.1)

From Equation (2.1) it follows that GBM requires very restrictive conditions for its validity. The condition 
P = 0 means that a firm makes no payments at all (Black & Scholes, 1973; Merton, 1974; Black & Cox, 1976; 
Leland, 1994; etc.). The condition ܲ ൌ  ,.ܺ used in (Leland, 1994; Leland & Toft, 1996; Goldstein et alߜ
2001; J. Huang & M. Huang, 2012, etc.) is more or less acceptable when payment P consists of dividends only, 
but when P includes dividends as well as debt payments, this proportionality becomes doubtful. Payment P has 
its schedule hardly related to changes in the firm’s size and value, and they certainly do not follow the firm 
value when it drops to the default threshold. A GBM solution is a lognormal distribution 

         ܷሺܺ, ሻݐ ൌ ሺ2ߪߨଶሻି1/2ܺିଵexp ሾെሺ݈݊ܺ െ ଶሻሿ (3.1)ߪሻଶ/ሺ2ܪ

RtHtH += 0)( ሻݐଶሺߪ , ൌ ߪ
ଶ  ܴ ,ݐଶܥ  ؠ ߣ  െ  ଶ/2ܥ

In the original Merton model, a firm defaults only if its valueis less than the firm’s outstanding debt at the 
time of debt maturity. Black and Cox (1976) improve this shortcoming introducing a threshold triggering 
default any time when the firm value hits the threshold (a default line). This version of the model spreads 
widely, and all subsequent generalizations of the model using GBM in their core historically have got the name 
of structural models. An excellent introduction to modern methods of credit risk estimation one can find in 
(Crouhy, Galai, & Mark, 2006; The Credit Market Handbook, 2006). 

Because of a role that the firm value has in financial economics, the general Merton model and its solution 
are of great importance. However, before studying this model, we revise it because Merton’s interpretation of 
payments is too short. The revised model considers firm manufacturing and marketing its production or 
rendering services at a market, subject to random shocks of a normal distribution. The market shocks affect the 
firm value with intensity C. The firm makes various payments while doing its business. Some of them are due 
to the manufacturing and marketing of the firm’s goods (variable costs); one can take them into account by 
adjusting the rate of returns α0. Other payments secure the every firm’s presence in business. Such expenses 
include fixed costs (FC), taxes (TAX), dividends (DIV), and debt payments (DP), all per unit time. Thus, one 
can write for business securing expenses (BSEs) 

P = FC + DP+ TAX+ DIV, (4.1)
P(t) = P0π(t), P(0) = P0> 0, π(0) = 1. 

here P is an arbitrary continuous function of time; P0 is a positive constant. The time dependence of FC and DP 
reflects changes in business conditions; TAX and DIV depend on their rates and year returns. Here after we refer 
to the process (1.1), (4.1) as the First extended Merton model or EMM1 for short. 

Equation (1.1) for random variable ( )0/ln PRXx = by Ito’s Lemma transforms into 
ݔ݀ ൌ ܴሺ1 െ ݐሻ݁ି௫ሻ݀ݐሺߨ  (5.1) ,ܹ݀ܥ

ሺ0ሻݔ ൌ ݔ ൌ ln ሺܴܺ/ ܲሻ, R = α0–C2/2. (5a.1)
Writing a Fokker-Plank equation for Equation (5.1), one comes to an equation for the probability 

distribution ),( txV , or x-distribution; Vy is a partial derivative over a variable y: 
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௧ܸ  ܴሺ1 െ ሻ݁ି௫ሻݐሺߨ ௫ܸ െ ଶܥ0.5
௫ܸ௫  ሻ݁ି௫ܸݐሺߨܴ ൌ 0. (6.1)

The initial condition is 
ܸሺݔ, 0ሻ ൌ ܸሺݔ; ,ܪ ߪ

ଶ), (7.1)

ሻݐሺܪ ൌ ۄሺ0ሻݔۃ ൌ  ,ݔሺܸݔ 0ሻ݀ݔஶ
ିஶ ߪ,

ଶሺݐሻ ൌ ݔሺۃ െ ۄሻଶܪ ൌ  ሺݔ െ ,ݔሻଶܸሺܪ 0ሻ݀ݔஶ
ିஶ , 

where ܸሺݔ; ,ܪ ߪ
ଶሻ is a normal distribution. There is also a boundary condition implying that a firm will 

default when its value falls to XD (XD < X0) 
V(DL, t) = 0, ܮܦ ൌ ݈݊ ሺܴܺ/ ܲሻ.                         (8.1) 

If XD is an outstanding debt as it is in (Black & Cox, 1976), Equation (8.1) makes an exogenous constraint. 
If the firm is free of debt, there is another constraint. A BSE share in the expected year returns is 

ܲ/ሺܴܺۃۄሻ ൌ exp ሺെܪ െ ߪ
ଶ/2ሻ.                          (9.1) 

For H0 ≥ 0, this share is less than unit, while for H0 < 0, it is more than unit, and the firm pays out more 
than it earns. The line x = 0 separates a profitable business from its failure. In this case, it is reasonable to 
introduce a soft endogenous boundary 

ܸሺܮܦ, ሻݐ ൌ 0, ܮܦ ൌ 0,                               (10.1) 
and watch the probability of crossing this line. Below the line, the firm’s activities are possible only if selling 
some other firm’s equity. The nature of this boundary is close to the default line introduced by Kim, 
Ramaswamy, and Sundaresan (1993). The firm defaults at this line if it runs out of cash. The boundary 
conditions (8.1) and (10.1) can be joined as 

ܸሺܮܦ, ሻݐ ൌ 0, ܮܦ ൌ max ሾ0, ݈݊ ሺܴܺ/ ܲሻሿ .                    (11.1) 
A solution of the boundary problem (6.1), (7.1), (11.1) is the firm log-value distribution; it is denoted 

as ܸ ሺݔ,  ሻ. If one knows V(x, t) solution in the open space, then a solution of the boundary problem can beݐ
written as 

ܸ ሺݔ, ሻݐ ൌ ܸሺݔ, ሻݐ  െ ܸሺ2ܮܦ െ ,ݔ   ሻ                      (12.1)ݐ
The probability distribution turns into zero at the default line: ܸ ሺݔ, ሻݐ ൌ 0, and the intensity of default 

probability IPD is 

ሻݐሺܦܲܫ  ൌ 2  ܸሺݔ, ݔሻ݀ݐ
ିஶ                             (13.1) 

The first three moments (the mean, variance, and skewness) are calculated along with the probability 
distribution V(x, t): 

ሻݐሺܪ ൌ  ,ݔሺܸݔ ஶݔሻ݀ݐ
ିஶ ሻݐሺܴܣܸ , ൌ  ሺݔ െ ,ݔሻଶܸሺܪ ஶݔሻ݀ݐ

ିஶ , ܵሺݐሻ ൌ  ሺݔ െ ,ݔሻଷܸሺܪ ஶ ݔሻ݀ݐ
ିஶ     (14.1) 

S(t) proportional to distribution skewness shows development of the distribution asymmetry. The main 
objective of any credit risk analysis is estimating the default probability over a chosen time interval (e.g. over 
the debt maturity) 

,ௌݐሺܦܴܲ ܶሻ ൌ න ݐሻ݀ݐሺܦܲܫ

௧ೄା்

௧ೄ

 (15.1)

here ݐ௦ is the moment when the credit is issued, ݐ௦   ܶ is the moment of debt maturity, and ܴܲܦሺݏݐ, ܶሻ is 
the default probability over the credit maturity period T. In this paper, tS = 0. 
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The mean log-value characteristics of the boundary problem (the mean, variance, and skewness) are: 

ሻݐሺܪ ൌ  ݔ ܸሺݔ, ∞ݔሻ݀ݐ
  , ܸܽݎሺݐሻ ൌ  ሺݔ െ ሻሻଶݐሺܪ ܸ∞

 ሺݔ,  ,ݔሻ݀ݐ

መܵሺݐሻ ൌ  න ሺݔ െ ሻሻଷݐሺܪ ܸሺݔ, ݔሻ݀ݐ
∞



(16.1)

Now we can answer the question raised at the beginning of the paper: what is the present value of the firm. 
The mean dollar value ܺሺݐሻof the firm in a semi-open space with a default line DL is 

ܺሺݐሻ ൌ ሺ ܲ/ܴሻ න ݁௫ ܸሺݔ, ݔሻ݀ݐ
∞


 (17.1)

The process volatility is 

ሻݐመሺܥ ൌ 
݀
ݐ݀

ܸܽݎሺݐሻ൨
ଵ/ଶ

 (18.1)

Using CAPM or any other theory providing for the relation between the expected rate of returns and 
volatility, one can find the expected rate of return as a function of volatility ݎሺܥመሻ. The time-continuous 
equation for the firm present value PV improving the discrete Equation (7) in the Introduction is 

ܸܲ ൌ ሺ ܲ/ܴሻ න
݀ ܺ
ݐ݀

∞


݁ି௧ሺଵାሺመሻሻ݀(19.1) ݐ

where ܥመሺݐሻ is the process volatility determined by Equations (16.1) and (18.1). The interval of integration in 
(19.1), or the firm/project time horizon, depends on two conditions: (a) ݀ ܺ/݀ݐ  0, and (b) ܥመ ൏  , whereܥ
Ccr is critical volatility unacceptably high for the investors. On the eve of achieving conditions ݀ ܺ/݀ݐ  0 or 
መܥ   ., investors begin massively to sell out the firm’s stocks dropping their price and the firm value downܥ 
The time horizon HT is determined by the event that occurs first: 

்ܪ ൌ ݉݅݊൛ ܶ, ܶ;  ܶ: ݀ ܺ/݀ݐ ൌ ݐ ݎ݂ 0 ൌ ܶ;  ܶ: ܥመሺ ܶሻ ൌ  ൟ,             (20.1)ܥ

ܸܲ ൌ ሺ ܲ/ܴሻ න
݀ ܺ
ݐ݀

ு


݁ି௧ሺଵାሺመሻሻ݀ݐ 

The project NPV is obviously determined by the equation NPV = FCF(0) + PV, where PV is given by 
Equation (20.1). 

What Type Is x-Distribution, and How Does It Depend on the Mode of Payment? 

For the firm with constant payments, π(t) ≡ 1, no debt, ݔ ൌ ln ሺܴܺ/ ܲሻ, Equation (5.1) is 
ݔ݀ ൌ ܴሺ1 െ ݁ି௫ሻ݀ݐ   (1.2)                              ,ܹ݀ܥ

here payments P = P0 are paid continuously. Another way to pay BSEs is to pay them as a lump sum once a 
year, or discretely. We consider both modes of payment starting with the continuous one. Because stochastic 
Equation (1.2) with initial condition (5a.1) has no exact solution, we try to understand the process behavior in 
an open space ( ∞<<∞− x ) qualitatively using the Brownian motion model. Suppose that at 0=t , we 
have an ensemble of Brownian particles whose initial locations ܺ have a normal distribution with mean H0 
and standard deviation σ, and one part of this ensemble is over line x = 0, while the other is under it (x-axis 
shows up). At line x = 0, there is a balance between mean year returns ܴܺۃۄ and payments P. 

It follows from Equation (1.2) that the drift rate depends on x. At x = 0, the drift is zero; this line is the line 
of unstable equilibrium for the process x(t). For x > 0, the particles drift up, the faster the higher x (due to 



RISK-NEUTRAL PROBABILITIES AND NO-ARBITRAGING PRINCIPLE 

 

200 

positive repulsion from the line x = 0). Parameter R bounds the drift rate from above. For x < 0, the particles 
drift down, the faster the greater |x|, with no limit for the drift rate at all. The two repulsion forces decrease a 
concentration n(x) of particles around line x = 0, and the concentration of the particles under the line drops 
faster and lower than the concentration above the line. Thus, a diffusion force appears proportional to the 
concentration gradient dxdn /− acting across line x = 0 and driving the particles located over the line against 
the repulsing force to line x = 0. Below line x = 0, the diffusion force fades fast because dxdn /− tends to zero, 
but the negative repulsion force carries the particles farther down. The decreasing concentration of particles in a 
thin layer over line x = 0 makes the particles in the next layer above the first, so far moving up, to stop and then 
move downwards. The line x = EQ(t), where particles make this U-turn, floats up and up until all particles in 
the ensemble find themselves under the line and moving down. For x > EQ(t), the particles move up; for x < 
EQ(t), they move down; and for x = EQ(t), their drift rate is zero. The diffusion force acting between the lines x 
= EQ(t) and x = 0 transports the particles across line x = 0, then the negative repulsion force drives them to 
negative infinity. The initially normal distribution of Brownian particles by and by turns into a leptokurtic and 
negatively skewed x-distribution. At that, the higher the ensemble location over line x = 0, the more time the 
ensemble deformation takes, the lesser the distribution skewness for fixed time intervals (not too long). The 
distribution rise in the early stage of its development can to some extent slow down the diffusion mass transfer 
across line x = 0 impeding the skewness development. Nevertheless, the permanently growing distribution 
skewness makes the distribution mean a concave-down function of time for every initial location of the 
ensemble center H0. Vice versa, the closer the mean of the initial ensemble to line x = 0, the faster runs the 
distortion of the normally distributed ensemble. The described ensemble evolution explains the space-time 
development of the x-distribution. 

It is interesting to compare the time dependences of the means ܪሺݐሻ and H(t), variances ܸܽݎሺݐሻ and 
VAR (t), and skewness መܵሺݐሻ and S(t) for the boundary problem (6.1)-(8.1) and the problem (6.1)-(7.1) in the 
open space, correspondingly. The means ܪሺݐሻ and H(t) behave the same way, they are both concave-down 
functions of time: ܪሺݐሻ because of losses at the boundary, and H(t) because of its ever-growing negative (left) 
tail. The main difference between them is in the time-scales of their development; because of losses, ܪሺݐሻ 
achieves its maximum and begins to decline sooner than H(t). The variances ܸܽݎሺݐሻ and VAR(t) behave quite 
differently. It the first part of its evolution, ܸܽݎሺݐሻ is a concave-up function of time growing due to the 
diffusion expansion and the distribution deformation. Then its growth slows down to zero with ܸܽݎሺݐሻ 
achieving its maximum as the distribution’s expanding and shrinking tendencies come to a short-time balance. 
In the last part of its evolution, the variance declines to zero as the distribution continues shrinking to zero. It is 
worthy to note, however, that variance ܸܽݎሺݐሻ slows down its growth at rather high values of the intensity of 
default probability IPD(t) and, therefore, the further development of the variance, though theoretically 
interesting, has no practical value. The system described with Equations (6.1)-(7.1) is an isolated system, whose 
variance VAR(t) grows infinitely as a concave-up function. The skewness መܵሺݐሻ and S(t) also behave differently: 
መܵሺݐሻ first declines from zero to negative values because of the left distribution deformation, but as the 
absorption at the boundary proceeds, መܵሺݐሻ gradually grows to small positive values. In the end of its evolution, 
the skewness returns to zero as the distribution finally disappears because of the boundary losses. The skewness 
S(t) always grows from zero to negative values due to the ever-expanding distribution’s left tail. 

Returning to jump-diffusion processes discussed in Introduction, one can see that the jump part of JDPs 
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tries to compensate the difference between the high EMM default probability produced by a heavy negative tail 
of the value distribution and the low GBM default probability caused by a light normal tail. To get information 
about statistical parameters of jumps, JDPs use heuristic methods for collecting this information from the 
market. As a result, jump parameters turn out to be market-averaged ones taken at a fixed moment, but EMM 
model shows directly that the distributionis dynamic and its development depends mostly on the state of the 
firm and current market parameters such as the volatility, interest rate, inflation rate, taxation rate, etc. 

It is clear that for a concave-down function of mean returns H(t), the mean year returns make a monotone 
non-increasing function of time, making the firm’s stock price to decline. In these conditions, no time-sequence 
of firm’s stock prices can make a martingale, or the martingale (risk neutral) measure does not exist. Later we 
shall see that for the firms with high H0 values, mean year returns remain approximately constant for their 
specific times t ≤ TNA, and the martingale measure exists in time intervals (0, TNA). At that, the lesser H0, the 
shorter is the interval where the martingale measure exists, if any. 

As one can see from the development of a firm with continuous payments, the payments introduce 
inhomogeneity into the problem space, and this development runs differently when firm’s initial parameters H0 
and VAR0 are varied (see the remark about Equation (1a) in Introduction). Now let us consider the case when a 
firm pays its BSEs of size Pk, k = 1, 2, 3, … in the end of each k-th time unit (a year)—the Second extended 
Merton model—EMM2. 

In the open logarithmic space (ݖ ൌ ln ሺܺ/ܺۃۄሻ, –∞ < z <∞), an equation for the firm value development 
between the payments is 

ݖ݀ ൌ ݐܴ݀  ܴ ,ܹ݀ܥ ൌ ߙ  െ  ଶ/2,                           (2.2)ܥ
an equation for the probability distribution with the normal initial condition ܷሺܪ ;ݖ, ߪ

ଶሻ is 

௧ܷ  ܴ ௭ܷ െ ଶܥ0.5
௭ܷ௭ ൌ 0,                              (3.2) 

ܷሺݖ, 0ሻ ൌ ܷሺܪ ;ݖ, ߪ
ଶሻ, 

and the probability distribution before payment(0 ≤ t ≤ 1) remains normal: 
ܷሺݖ, ሻݐ ൌ ሺ2ߪߨଶሻିଵ/ଶexp ሼ െሺݖ െ  ଶሻ ሽ                      (4.2)ߪሻଶ/ሺ2ܪ

ሻݐሺܪ ൌ ܪ   ,ݐܴ ሻݐଶሺߪ ൌ ߪ 
ଶ   .ݐଶܥ

The effect of one-time BSE payment Pk consists in an instant left shift LPk of each point of ܷሺݖ,  :ሻ, (4.2)ݐ
ܮ ଵܲሺݖሻ ൌ ln ሾሺܺ െ ଵܲሻ/ܺሿ, ܺ  ଵܲ. 

The payment P1 makes a boundary separating firms who survived the payment from those who defaulted 
at the payment. In z-space the default boundary is ܤ ଵܲ ൌ ln ሺ ଵܲ/ܺۃۄሻ. The BP1-boundary distribution function 
෩ܷሺݖ, 1ሻ for the survived firms is 

෩ܷሺݖ, 1ሻ ൌ ܷሺݖ, 1ሻ െ ܷሺ2ܤ ଵܲ െ ,ݖ 1ሻ,                           (5.2) 
ln ሾሺܺ െ ଵܲሻ/ܺሿ ൌ ln ሺ1 െ ݁భି௭ሻ, 

and the transformed function can be written as 
ሺଵሻݖ ൌ ݖ  ln ሺ1 െ ݁భି௭ሻ,                             (6.2) 

ଵܷ൫ݖሺଵሻ, 1ା൯ ൌ ሺ1 െ ݁భି௭ሻ ෩ܷሺݖ, 1ିሻ,                         (7.2) 
ܤ ଵܲ  ݖ ൏ ∞ , െ∞ ൏ ሺଵሻݖ ൏ ∞, 

t = 1– and 1+ are the moments in the end of the first year before and after the P1 payment, the factor 1 െ
݁భି௭  in Equation (7.2) provides for the integral identity ܷ൫ݖሺଵሻ, 1ା൯݀ݖሺଵሻ ൌ ෩ܷሺݖ, 1ିሻ݀ݖ  because the 
number of firms in an elementary volume dz around the point z must remain the same after the transformation. 
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This transformation affects differently high ( ଵܺ ب ଵܲ) and low ( ଵܺ ؆ ଵܲ) values of the distribution: high values 
shift insignificantly while low values travel large distances to the left adding negative skewness to the 
distribution. This skewness increases the default probability for all firms, and brings to imminent default the 
firms with ଵܺ  ଵܲ. 

The probability distribution for time t before the second payment, 1ା  ݐ  2ି, is 

ܷሺݖ, ሻݐ ൌ ൫2ܥߨଶሺݐ െ 1ሻ൯ିଵ
ଶ න ݔ݁ ቈെ

ሺݖ െ ݐܴ െ ሻଶߦ

ݐଶሺܥ2 െ 1ሻ 
∞

ି∞
ଵܷ
ାሺߦሻ݀(8.2) ߦ

ଵܷ
ାሺݖሻ ؠ ଵܷሺݖ, 1ାሻ.                                (9.2) 

At the end of the year, tk = 2+, k = 2, the distribution undergoes another shift 
ܮ ଶܲሺݖሻ ൌ ln ሾሺܺ െ ଶܲሻ/ܺሿ, ܺ  ଶܲ. 

For payment P2 we define boundary ܤ ଶܲ ൌ ln ሺ ଶܲ/ܺۃۄሻ  and the BP2-boundary distribution 
function  ෩ܷ ሺݖ,  ሻ (here function U(z, t) is determined by equation (8.2) at t = 2)ݐ

෩ܷሺݖ, 2ିሻ ൌ ܷሺݖ, 2ሻ െ ܷሺ2ܤ ଶܲ െ ,ݖ 2ሻ,                       (10.2) 
ሺଶሻݖ ൌ ݖ  ln ሺ1 െ ݁మି௭ሻ,                             (11.2) 

ܷଶ൫ݖሺଶሻ, 2ା൯ ൌ  ሺ1 െ ݁మି௭ሻ ෩ܷሺݖ, 2ିሻ;                        (12.2) 
t = 2– and 2+ are the moments at the end of the second year before and after the payment. In Equations (11.2) 
and (12.2), one has ܤ ଶܲ  ݖ ൏ ∞ , െ∞ ൏ ሺଶሻݖ ൏ ∞. 

The probability distribution for time t, 2ା  ݐ  3ି, before the third payment, is 

ܷሺݖ, ሻݐ ൌ ൫2ܥߨଶሺݐ െ 2ሻ൯ିଵ
ଶ න ݔ݁ ቈെ

ሺݖ െ ݐܴ െ ሻଶߦ

ݐଶሺܥ2 െ 2ሻ 
∞

ି∞
ܷଶ

ାሺߦሻ݀(13.2) ߦ

ܷଶ
ାሺݖሻ ؠ ܷଶሺݖ, 2ାሻ.                                (14.2) 

Continuing this procedure further, one can find the probability distribution for any time t and a sequence 
of payments P1, P2, P3, … Each payment increases the distribution negative skewness more and more. 

The distribution mean Hd(t), here subscript d stands for “discrete payments”, develops linearly, Hd(t) = H0 
+ Rt, in the interval 0 ≤ t ≤ 1– . At t = 1+ the distribution instantly gets left (negative) skewness which leads to a 
leap down in the mean value Hd(t). In the next time interval 1+≤ t ≤ 2–, Hd(t) grows with a decreasing rate that 
makes Hd(t) a concave-down function in this time interval; in the end of the second year the mean undergoes 
another leap down, etc. As a result of a sequence of payments, the mean Hd(t) becomes a piecemeal function 
with leaps down at times of payments tk, k = 1, 2, 3, … and segments of a continuous concave-down function 
between the leaps. At some time depending on the firm’s initial conditions, the mean Hd(t) achieves its 
maximum and then goes down. It is important that consecutive mean year returns make a non-increasing 
sequence tending to zero as Hd(t) achieves maximum. After the maximum, the mean year returns become 
negative as the mean returns tend to zero. The variance VARd(t) grows linearly during the first year 0 ≤ t ≤ 
ሻݐௗሺܴܣܸ :–1 ൌ ߪ 

ଶ   At t = 1+, then the variance leaps up as a result of payment P1 and the instant .ݐଶܥ
distribution expansion to the left. Within the next year 1+≤ t ≤ 2–, the variance VARd(t) monotonically grows 
because of the diffusion spread and further distribution distortion, etc. The variance VARd(t) occurs to be a 
piecemeal function with leaps up at times of payments tk, k = 1, 2, 3, …; between the leaps it consists of 
segments of a concave-up function. The distribution skewness Sd(t) remains zero during the first year, 0 ≤ t ≤ 1–, 
but at the moment of payment t = 1+, the skewness jumps down to a negative value. In the next year 1+ ≤ t ≤ 2–, 
the skewness Sd(t) continuously and monotonically decreases until the moment t = 2+ when it undergoes 
another jump down, etc. The skewness Sd(t) is a piecemeal function with leaps down at times of payments tk, k 
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= 1, 2, 3, … and consisting of segments of a continuous concave-down function. As one can see, lump BSE 
payments provide for a growing negative tail to the originally normal distribution, and also introduce sharp 
changes (leaps) into the log-value distribution and its statistical moments. However, the main findings for 
development of the firm with continuous payments that its mean and negative skewness are concave-down 
functions of time remain true in the case of discrete payments, too. 

The real firm value distribution evolves in a semi-open space constrained from below with an absorbing 
boundary—the default line (DL ≤ z < ∞, ܮܦ ൌ ln ሺܺ/ܺۃۄ, XD is a firm’s debt). The probability distribution 
ܷሺݖ,  ሻ is now described by the boundary problem with payments Pk, k = 1, 2, 3,… at the end of each kth yearݐ

ܷ௧  ܴ ܷ௭ െ ଶܥ0.5 ܷ௭௭ ൌ 0,                              (15.2) 
ܷሺݖ, 0ሻ ൌ ܷሺܪ ;ݖ, ߪ

ଶሻ, 
ܷሺܮܦ, ሻݐ ൌ 0.                                  (16.2) 

Knowing a solution in an open space U(z, t) (4.2), (8.2), (13.2), …, one can write a solution of the 
boundary problem as 

ܷሺݖ, ሻݐ ൌ ܷሺݖ, ሻݐ െ ܷሺ2ܮܦ െ ,ݖ  ሻ.                         (17.2)ݐ
Having the distribution ܷሺݖ,  ሻ, DL ≤ z < ∞, one can compute all desired statistical moments such as theݐ

mean ܪௗሺݐሻ, variance ܸܽݎௗሺݐሻ, and skewness መܵௗሺݐሻ using Equation (16.1) and substituting function ܷሺݖ,  ሻݐ
for ܸ ሺݖ,  ሻ. One can compute the intensity of default probability IPDd(t) with Equation (13.1) after substitutingݐ
U(x, t) from Equation (13.2) for V(x, t). 

Considering the case of a firm that pays its BSEs in a lump sum Pk at the end of the kth year, k = 1, 2, … , 
let us compare the time dependences of ܪௗሺݐሻ and Hd(t), ܸܽݎௗሺݐሻ and VARd(t), and መܵௗሺݐሻ and Sd(t) for the 
boundary problem (15.2), (16.2) and for the problem (3.2) in the open space, correspondently. For discrete 
payments Pk, the mean values ܪௗሺݐሻand Hd (t) behave very similarly; they are both piecemeal functions with 
leaps down caused by yearly lump payments. Between the leaps, ܪௗሺݐሻand Hd (t) consist of segments of 
concave-down functions of time: ܪௗሺݐሻ because of losses at the boundary, and Hd (t) due to the ever-growing 
negative (left) tail. The main difference between them is in the time-scales of their development; because of 
losses, ܪௗሺݐሻ achieves its maximum and then degrades to zero sooner than Hd (t). 

Variances ܸܽݎௗሺݐሻ and VARd (t) having common traits still behave differently. Both functions  ܸܽݎௗሺݐሻ 
and VARd (t) are piecemeal functions with leaps at the times of payments due to instant distribution 
deformations. However, in the first part of its evolution, ܸܽݎௗሺݐሻ is an increasing concave-up function of time 
growing due to the diffusion expansion and the distribution deformation. By and by, its growth slows down to 
zero as ܸܽݎௗሺݐሻ achieves its maximum. Finally, variance ܸܽݎௗሺݐሻ drops to zero while the distribution 
continues its shrinking to zero in the last part of its evolution. In the time interval where the variance increases, 
ܸܽݎௗሺݐሻ leaps up at the moments of payments. The length of those leaps decreases slowly to zero as 
function ܸܽݎௗሺݐሻ approaches its maximum. In the time interval where the variance declines, function ܸܽݎௗሺݐሻ 
leaps down at the moments of payments. The leap length first increases, then fades to zero. Again, variance 
ܸܽݎௗሺݐሻ slows down its riseat high values of the intensity of default probability IPD(t), thus, the further 
development of the variance has no practical value. The problem (3.2) considers an isolated system, whose 
variance VARd (t) grows infinitely with concave-up segments between the leaps up. The length of those leaps 
gradually declines to zero. The skewness functions መܵௗሺݐሻ and Sd (t) also behave differently: መܵௗሺݐሻ first 
declines from zero to negative values because of the distribution deformation. As the absorption at the 
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boundary proceeds, መܵௗሺݐሻ by and by becomes positive. At the end of its evolution, the skewness መܵௗሺݐሻ 
returns to zero as the distribution finally disappears due to losses. The skewness Sd (t) always declines from 
zero to lesser and lesser negative values due to the ever expanding distribution’s left tail. 

Within any kth year, the effective rate of year returns does not remain constant but is a decreasing 
monotone function of time both for the cases of continuous and discrete payments. It makes the firm’s stock 
price to decrease over time, and, consequently, the time-sequence of stock prices can never be a martingale. In 
other words, the martingale measure does not exist in these conditions. However, the rise of mean value, caused 
by the initial positive drift, can counteract to some extent the effect of diffusion mass transfer across the 
boundary, slowing down skewness development. For sufficiently high H0 values, mean year returns can remain 
approximately constant in a time interval (0, TNA), and the martingale measure exists in that interval. Vice versa, 
the closer H0 to the zero line, the faster runs the distortion of the initially normal distribution, the shorter is the 
time interval (0, TNA) where the martingale measure exists, if any. 

According to the First Fundamental Theorem of Asset Pricing (Shiryaev, 1998), a (B, S)-market 
determined in a filtered probability space (Ω, F, (Fn), P) consists of a bank account B = (Bn), Bn > 0 and a finite 
number d of assets S = (S1, S2, …, Sd), Si = (Si

n). The market operates at time moments n = 0, 1, …, N, F0 = 
,}  .ሽ, FN = {F}ܨ

The (B, S)-market is a no-arbitraging market if and only if there is a martingale (risk-neutral) measure P̃ 
equivalent to P-measure, and d-dimensional calibrated sequence 

ܵ
ܤ ൌ ൬

ܵ

ܤ
൰ , ܵ ൌ ሺܵ

ଵ, ܵ
ଶ, … , ܵ

ௗሻ (18.2)

is a P̃-martingale, that is, for any i = 1, 2, … , d and n = 0, 1, … , N, one has 

~ܧ ቚௌ


ቚ ൏ ∞ , ~ܧ ቀௌ


ቚ ିଵሻܨ ൌ ௌషభ


షభ
  (19.2)

here ܧ~ means an operation of taking average of a random variable in the martingale (risk-neutral) P ̃-measure. 
One can find the Fundamental Theorem of Asset Pricing in a bit different wording in an excellent textbook 

(Financial Economics 1998, p. 525). A necessary condition for getting (19.2) is a self-financing portfolio, 
which means that all portfolio incomes go for future investments only; there is no other outflow from that 
portfolio (Harrison & Kreps, 1979). Using the martingale terminology, one can say that at the market of firms 
with payments, the calibrated stock price sequence (Sn/Bn) makes a local martingale in the time interval (0, TNA). 
Using this theorem, one can conclude that the market for which there is no risk neutral measure is not the 
no-arbitraging market. This explanation shows that neither the model with discrete-time payments nor the 
model with continuous-time payments supports the ideas of risk neutral probabilities and no-arbitraging 
markets in general. The no-arbitrage pricing principle can hold only for individual stocks in their specific time 
intervals t ≤ TNA, where the firm’s mean year returns remain constant. 

General understanding of the process (5.1) with continuous BSE payments and the process (2.2) with 
discrete BSE payments sheds light on the behavior of the intensity of default probability IPD(t). Because the 
process drives the Brownian particles to negative infinity, and the faster, the deeper their locations under the 
line x = 0, the intensity of default probability IPD(t) grows with an acceleration over time (a growing 
concave-up function). For the problem (2.2) with discrete BSE payments, the function IPD(t) acquires 
additional leaps up at the moments of BSE payments. The default probability PRD as an integral of IPD(t) over 
some time interval is a continuously increasing monotone function of time. 
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We solve the problem of EMM1(6.1), (7.1), (10.1) with π(t) ≡ 1numerically, estimating the mean returns 
H(t), variance VAR(t), skewness S(t), and the intensity of default probability IPD(t) for x-distribution. We trace 
down a dependence of the default probability on factors of the firm and its business environment. Knowing the 
risk threatening a firm is important not only for banks issuing commercial credits to the firm, or for the 
companies insuring those credits, but also for the firm’s management when planning long-term business 
operations. At this stage, we suppose that all perfect market assumptions hold. We present examples of 
modeling of distribution V(x, t) and its statistical moments H(t), VAR(t), S(t) in Figures 1-4, and the intensity of 
default probability IPD(t) for different initial conditions in Figure 5. Model parameters are R = 0.10, 
ߪ

ଶ ൌ 0.03, C2 = 0.008, T = 10 (years), DL = 0. 
 

Table 1 
Relation Between the Initial Value H0 and a Share of BSEs in Mean Year Returns 

H0 
P

 H0 ۄܺۃܴ
P

 H0 ۄܺۃܴ
P

 H0 ۄܺۃܴ
P

 ۄܺۃܴ

4.0 0.0183 1.4 0.248 0.9 0.407 0.4 0.670 
3.0 0.050 1.3 0.273 0.8 0.449 0.3 0.741 
2.5 0.082 1.2 0.301 0.7 0.497 0.2 0.819 
2.0 0.136 1.1 0.333 0.6 0.549 0.1 0.905 
1.5 0.223 1.0 0.368 0.5 0.607 0. 1. 

 

Figures 1a, 1b show the difference H(t)-H0 as a function of time and H0. Table 1 explains the choice of H0 
values illustrating a relation between H0 and the BSE share in average year returns ܲ/ሺܴܺۃۄሻ. We include the 
first two entries in the table (H0 = 4.0 and 3.0) corresponding to low BSE shares to demonstrate that the 
difference H(t)-H0 for x-distribution tends asymptotically to the GBM difference H(t) – H0 = Rt, as H0 tends to 
infinity. 

Figures 1a, 1b supporting the inference of our qualitative analysis demonstrate that all lines H(t) fall apart 
into two classes: the class of H(t)-lines first rising then falling, and the second class of H(t)-lines falling from 
the start. The second class is of no practical interest; we do not consider it here. The main parameter controlling 
this division is H0-parameter; other problem parameters (R, ߪ

ଶ, and C) contribute to a lesser degree. The 
critical H0, separating the classes, is about a unit for the chosen problem parameters. Among the rising and 
falling lines, there are the lines whose rise takes a long time (decades, lines 1-6). One can consider such lines as 
semi-steady ones in not too long time intervals. Figure 1a shows that a slope of each H(t)-H0 line declines from 
R-value specific for GBM as H0 descends from high to low values. The H(t)-lines with H0 in the interval (1.10, 
1.20) are the lines of stagnation for whom H(t) varies within േ0.1 ܪ in the period of ten years. Figure 1a 
proves that the GBM mean (line G) makes no good approximation for the EMM1 lines H(t). Essentially, that 
all H(t)-H0 curves are concave-down (like lines 7 and 8), and sooner or later, all lines H(t) shall pass their 
maximum and go down. 

The approximately straight rise of H(t) for high H0 (lines 3-6), providing for almost constant mean year 
returns, says that the no-arbitrage pricing principle is effective for the assets (stocks or bonds) issued by the 
firms within those time intervals. However, this principle is not a characteristic of the market, but rather a 
characteristic of an individual asset and the firm standing behind it. Figure 1b shows clearly the decrease in 
mean year returns for the firms with H0 = 1.20, 1.15, and 1.10. Mark that line 1 (H0 = 1.20) remains straight for 
eight years, line 2 (H0 = 1.15) remains straight for four years, and line 3 is never straight. Correspondingly, 
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stock prices of the firm 1 (H0 = 1.20) are time-invariant for eight years, stock prices of the firm 2 (H0 = 1.15) 
are time-invariant for four years, and stock prices of the firm 3 (H0 = 1.10) always decline. So, the no-arbitrage 
pricing principle holds for the stock-1 for 8 years (TNA = 8), for the stock-2 for 4 years (TNA = 4), and it is never 
holds good for the stock-3 (TNA = 0). However, a growing volatility introduces its corrections to lengths of the 
time intervals where the stock prices remain constant. 

Of course, real TNA estimates are determined by the boundary problem ܪሺݐሻ solutions: 

ሻݐሺܪ ൌ න ݔ ܸሺݔ, ݔሻ݀ݐ
∞


 (20a.2)

ሻݐௗሺܪ ൌ න ݔ ܷሺݔ, ݔሻ݀ݐ
∞


 (20b.2)

here ܸ ሺݔ, ,ݔሻ is the solution of the problem (6.1)-(8.1) with continuous payments, and ܷሺݐ  ሻ is the solutionݐ
of the problem (15.2)-(16.2) with discrete payments. Real TNA values are shorter than the values estimated above. 

The x-variance VAR (Figure 2) demonstrates the pattern also supporting the qualitative analysis. When H0 
descends from high to low values, the variance grows fast, starting from the Ct-line specific for the 
GBM-distribution. For small t near the start where x-distribution skewness is still low, the variance is close to 
its GBM-approximation. When x-distribution gains material skewness, its variance significantly exceeds the 
GBM-variance. Variance values for the cases with low H0 in the end of the ten-year period show violent 
fluctuations: for H0 = 1.1, the standard deviation increases from σ0 = 0.17 to σ = 0.69 (VAR = 0.47), while for 
GBM-distribution the standard deviationis half as much (VAR = 0.11, σ = 0.33). The excess of x-variance over 
GBM-variance is due to the distribution deformation. To the contrary of the GBM-variance having constant 
volatility C, x-variance has a time-varying effective volatility Ceff(0) = C, Ceff(t) = [dVAR/dt]1/2, which is an 
increasing monotone function of time. The growing volatility shortens the time intervals where the stock prices 
can be constant (Figures 1a and 1b). 

We see a similar pattern in the development of x-distribution skewness (Figures 3a and 3b). From small 
negative values specific to high H0 (4.0 or higher), it declines fast, achieving large negative values of 
about—0.5 (H0 = 1.1). For the standard skewness Sst: 

ܵ௦௧ ൌ  ଷ/ଶܴܣܸ/ܵ
and H (t =10, H0 = 1.1), one has Sst = -1.33. The S&P500 Index’s average value for 1970-2000 is Sst = -1.73 
(Kou, 2007). Figure 4 shows typical examples of x-distribution, where one can observe the development of 
longer negative tails. 

Figures 5a and 5b show how the intensity of default probability IPD(t, H0) depends on time and initial H0. 
Mark that development of IPD(t, H0) is very inertial: for a significant part of 10 years, IPD remains low, rising 
to noticeable values in the second half of the graph. Figures 5a and 5b demonstrate a fast IPD rise when H0 
decreases. This behavior of the IPD(t) function can suggest a false feeling of safety to the management of the 
firm using a one-year horizon model like the Moody’s KMV (Bohn, 2006) for estimating a firm’s state. Such 
models warn on a coming crisis too late, when a significant part of the time, the management needs to improve 
the situation, is already lost. 
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The no-arbitraging principle holds for the whole market only if the market consists of the GBM-firms with 
no payments. For the market consisting of EMM-firms, the no-arbitraging principle holds for each ith stock for 
the time ݐ  ேܶ

  from the start of the firm’s business where the mean year returns remain constant. Therefore, 
the no-arbitrage pricing principle never holds for the whole market for more or less long times because all firms 
start their businesses independently at their times. However, for short-term operations with stocks whose time 
intervals are much lesser than a year, are always non-arbitraging; the expected return of the short-term deal is 
zero. Considering long-term investments (Tinv ≈ ேܶ

 ) when mean year returns begin to decline, an investor 
must be very cautious because the martingale characteristic of stock prices and no-arbitrage pricing principle 
become now ineffective. Increases in debt leverage, tax rate, interest rate, or inflation rate can significantly 
decrease the firm mean year returns inflicting losses to the long-term investors. 

The principal difference between the lognormal GBM-distribution and the skewed EMM-distribution is 
the following. The GBM-firm now generally used in the financial analysis (see the literature review) remains 
“ever young” keeping invariable mean year returns R and volatility C; its default probability is symmetric and 
grows slowly, and the firm dies (defaults) accidentally amid full prosperity. According to properties of the 
diffusion motion, the probability that a diffusion process starting at time t = 0 from point M on a plane (x, t) 
shall cross an arbitrary straight line x = a in that plane at a finite time T(M, a) is unit almost for sure: P(T(M, a) 
< ∞) = 1 a.s. (Shiryaev, 1998, pp. 302-303). If line x = a is a default line, then the firm’s longevity is finite 
almost for sure. From an optimistic point of view, that means that there is a set of firms of a null measure 
whose longevity is infinite: T(M, a) = ∞; in other words, there are firms which can exist forever! To the 
contrary of the ever-young GBM-firm, the EMM-firm by and by “grows old”: its effective mean year returns 
Reff(t), 0 < Reff(0) < R, is a non-increasing monotone function of time, its effective volatility Ceff(t) = 
[dVAR/dt]1/2, Ceff(0) = C, is an increasing function of time, and its negative skewness is an ever decreasing 
function of time. The left (negative) tail of the distribution grows fast significantly increasing the default 
probability compared to the GBM default probability. No later than at time TMax (see Equation (23.1): 

ெܶ௫ ൌ min ቆ
,ோݐ :ோݐ ;ݐ ݐ ൏ ,ோݐ ܴሺݐሻ  0; ܴሺݐோሻ ൌ 0;

ݐ :ݐ  ൏ ,ݐ ሻݐሺܥ ൏ ;ܥ ሻݐሺܥ ൌ ܥ
ቇ, (21.2)

investors will lose their interest in such a firm, get themselves free of the firm’s stocks dropping down the stock 
price and the firm value, and then the firm shall soon default (here Ccr is a critical volatility value at which 
investors recognize the risk of holding the firm’s stocks as unacceptable). A diffusion walk of the firm value is 
now faster (Ceff(t) ≥ C) and asymmetric: a negative move in the firm value is more probable than a positive 
move. This asymmetry increases the default probability of the EMM-firm compared to the default probability 
of the GBM-firm and makes the EMM-firm default accidentally any time before TMax. The EMM-firm’s 
longevity is finite, and lesser than the longevity of a comparable GBM-firm. 

The firm’s business longevity depends on the initial conditions and competition of growth rates of the 
variance and skewness on the one side, and the positive drift rate on the other. So, just having a positive drift 
rate is not enough for safe corporate development, the drift rate must be sufficiently high. Any stagnation, 
leaving aside the decrease in the firm value, affects negatively the firm’s survival. For example, for a typical 
small firm, its longevity is rather short because of a low H0 (following from an asset shortage), a relatively 
large initial variance VAR0 and high sensitivity to market fluctuations C (resulting from a shortage of business 
skills), and a rather low rate of expected returns R. The situation is further aggravated by debts if any. The 
firm’s business stability depends on the quality of its management and team executing the firm’s plans, on a 
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corporate industry and competition in it, and on a state and trends in the national/global economy. The 
measures strengthening firm’s business health are well known: optimizing payments, raising the rate of 
expected returns, increasing efficiency of financial management by using the most precise mathematical models, 
etc. All this is hardly achievable without a regular critical reconsideration of business plans and reorganization 
of the firm’s management, especially the top management as a crucial element of the corporate success. The 
effects of the firm’s management on the firm’s longevity are considered in the qualitative corporate life-cycle 
theory promoted by Adizes (2012). 

So far we consider a firm with one business project only. A firm can strengthen its stability by the project 
diversification developing simultaneously several projects at different stages of their lifecycles starting new 
projects and closing “aging” projects at optimal times. The theory of large firms running several business 
projects at a time is still to be developed. 

Conclusion 
The paper suggests two extensions of the Merton model of 1974 (EMM1 and EMM2) considering BSE 

payments, and new statistical distributions following from that models. In the open space in variables (x, t), x = 
ln(RX/P0), X—a firm value, t—time, R—an expected rate of returns, P = P0π(t) is continuous function of 
payments, the log-value distribution evolves from a normal distribution to a negatively skewed one, with 
skewness growing over time and mean making a concave-down function of time. In the open space in variables 
(z, t), z = ln(X/ܺۃۄ), X—a firm value, t—time, ܺۃۄ—a mean value of the initial X0 distribution, Pk > 0, k = 1, 
2, …—discrete lump payments at a kth year, the log-value distribution through a series of leaps at the moments 
of BSE payments transforms from a normal distribution to a negatively skewed one. Its skewness and mean are 
piecemeal functions with leaps at the moments of payments, and segments of concave-down functions between 
the leaps. The principal difference between the GBM-distribution and both EMM-distributions is the following. 
The GBM-firm remains “ever young” keeping time-invariant mean year returns R and volatility C; the random 
walk of the firm value is symmetric, the default probability remains low. The both EMM-firms, to the contrary, 
gradually “grow old”: their effective mean year returns Reff(t), 0 < Reff(0) <R, are non-increasing functions of 
time, and their effective volatilities Ceff(t) = [dVAR/dt]1/2, Ceff(0) = C grow over time. The random walk of the 
firm value for the both models is asymmetric and more intensive than in the GBM case: a negative move in the 
firm value is more likely than a positive move; this imbalance increases the default probability. The EMM-firm 
has a lesser longevity than the GBM-firm. EMM helps to analyze the firm’s longevity as a function of time and 
parameters of the firm’s business conditions, and choose the best feasible means to strengthen the firm’s 
economic position. Based on the new firm value distribution, we present the continuous-time models 
computing the firm present value PV and the project net present value NPV with an analysis of factors affecting 
the time horizons of those models. It is shown that the firm PV and project NPV equations now in use are 
internally inconsistent and misleading. 

The risk-neutral probabilities and no-arbitrage pricing principle follow from the ability of the firm to keep 
its mean year returns time-invariant. It is always correct at the GBM-market with firms making no payments or 
with firms whose payments are proportional to their values (P = δX) because mean year returns of the 
GBM-firm always equal R (δ = 0) or R – δ (δ ≠ 0). When a model takes account of the BSE payments in a 
general form (as both EMMs do), then for a sufficiently long time, the firm mean year returns begin to decline. 
In such conditions the stock price of the firm decreases, too. There are no martingale measures and risk-neutral 
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probabilities, and the no-arbitraging principle for the market is ineffective for both modes of payment, 
continuous or discrete. At the market consisting of firms paying their BSEs, a firm can keep its mean year 
returns (approximately) constant only for some time, 0 ≤ t ≤ TNA, depending on its business conditions. In other 
words, the risk-neutral probabilities and no-arbitraging principle hold for individual firms and only in their 
specific time intervals (0, TNA), rather than for the entire market and for all times as most economists believe 
now. For short-term deals with Td << TNA, when a trader buys an asset and soon resells it trying to profit on the 
asset price difference, the no-arbitraging principle always holds, and the market is fair to such traders. For 
long-term investors with investment times Tinv ≈ TNA, the picture is quite different. A class of long-term 
investors includes such weighty investors as pension funds, mutual funds, insurance companies, banks, and big 
firms. For such investors the effects of payments are essential, and the investors must timely re-estimate their 
portfolios because the mean year returns of any firm in the portfolio decrease over time for t ≥ TNA (the stocks 
become “stale”). The martingale characteristic of stock prices and effectiveness of the no-arbitraging principle 
depend on the parameters of the firm issuing the stock. Increase in debt, interest rate, tax rate, inflation rate, etc. 
happening within an investment period decrease the firm’s mean year returns inflicting losses to investors. 

An alerting implication from our study is that the results derived with the technique of risk-neutral 
probabilities when analyzing effects of debt and default are misleading for the theory of financial economics 
and dangerous for practice. The EMM1 and EMM2 models can be helpful to the firm’s management for a 
better understanding of the firm’s current state and the prospects of its development, especially when planning 
long-term business operations. It can also be useful for long-term investors keeping firms’ stocks in their 
portfolios for a long time, and also for banks and insurance companies estimating credit risks for a particular 
commercial borrower over the debt maturity. 
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