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Abstract: This paper aims to verify the Cu9Al4 phase influence on the nanomechanical behavior of the Cu-14Al-4Ni-xTi alloy 
obtained by rapid solidification with addition of different amounts of Ti. Using the Scanning Electron Microscopy (SEM), Atomic 
Force Microscopy (AFM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD), it was possible to perform the 
samples’ microstructural characterization. In addition, the reduction of the Cu9Al4 phase precipitation and the X-phase appearance 
were verified according to the increase of the titanium percentage added. The nanomechanical behavior was evaluated by 
nanoindentation tests, which showed a significant decrease of the elastic modules and an increase of the Poisson coefficient’s 
according to the titanium amount. This research establishes that the reduction of Cu9Al4 phase implies on the increase of the capacity 
to dissipate energy. Therefore, the high damping capacity combined with the X-phase presence increases the super elasticity and the 
alloy ductility. 
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Nomenclature 

E elastic module obtained 

Q effective contact area 

hc residual deformation value 

K indenter constant 

E* simplified elastic module 

Ei elastic module of the indenter of type Berkovich 

G grain size ASTM 

L grain length (millimeters) 

S contact stiffness 

Greek Letters 

β' adjustment constant for the indenter of type Berkovich

V Poisson’s ratio of the material 

vi Poisson’s ratio of the indenter of type Berkovich 

1. Introduction 

The properties of the shape memory alloy (SMA) 
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are mostly related to the reverse martensitic 

transformations. This is characterized by the low 

energy and high mobility of the interfaces between the 

phases, martensitic and matrix, when the variations in 

temperature or stress application are too small [1]. 

The Cu-Al-Ni alloys have the same properties as 

the SMAs and present a good internal friction 

behavior [2]. 

However, due to the elastic anisotropy, there is a 

great susceptibility to the fragile intergranular fracture 

[3], where the multiple crack nucleation occurs in the 

contours of the grains provoked by the Cu9Al4 phase 

[4]. For this reason, it is impossible to apply it in 

industrial systems. Nevertheless, the low ductility can 

be improved by grain refinement through adding Ti 

and the rapid solidification process. This process can 

be achieved by applying high cooling rates (102-106 

K/s) or imposing high levels of supercooling by 

minimizing or eliminating nucleating agents [5]. 
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the energy-dispersive spectroscope (EDS), corresponds 

approximately to the percentages attributed to the 

samples. These values are shown in Table 1. 

The results of the X-ray diffraction (XRD) analysis 

of the samples according to the Ti percentage added 

are shown in Fig. 2. It was verified, that during the 

supercooling process the β phase decomposes on the 

eutectoid point β → α + γ2 + β2 [10], where α 

represents a solid solution which is rich in copper and 

has a face centered cubic structure, the β2 represents a 

NiAl phase of body-centered, cubic structure and γ2 

represents a solid solution of the type Cu9Al4 with a 

simple cubic crystalline structure. The intermetallic γ2 

phase represents microstructural homogeneity and is 

bonded to Ni, which is present in the alloy. 

The Cu-14Al-4Ni alloy presents the predominant γ2 

phase as a crystalline structure due to the 

decomposition of the β phase of polycrystalline 

character, which tends to increase the fragility of the 

alloy. 

The diffraction analysis of the Cu-14Al-4Ni alloy 

revealed a structure rich in γ2 phase (90.7%) and with 

presence of β2 phase (9.3%). The γ2 phase represents a 

typical martensitic structure (β’1; 30.19º-63.5º) [11]. 

However, there was no α phase in the Cu-14Al-4Ni 

alloy. 

The Cu-14Al-4Ni-0.5Ti alloy presented, due to the 

action of the Ti, a crystalline structure rich in γ2 phase 

(92.02%) and the X-phase composed of CuNi2Ti 

(4.98%). 

However, for the Cu-14Al-4Ni-0.6Ti alloy, the 

amount of Ti that served as a refiner contributes to the 

reduction of the γ2 phase (53.95%) and to the formation 

of the phases CuNi2Ti (41.65%) and AlCu2Ti (4.4%).  
 

Table 1  Chemical composition of the samples obtained by 
the EDS. 

 
Alloying elements wt% 

Cu Al Ni Ti 

0.0% Ti 80.99-81.17 15.22-15.30 3.61-3.67 - 

0.5% Ti 81.53-81.67 14.66-14.74 3.64-3.76 0.54-0.58

0.6% Ti 82.82-82.90 13.40-13.46 3.67-3.75 0.57-0.59

0.7% Ti 80.90-80.92 14.60-14.68 3.72-3.84 0.65-0.69

 
Fig. 2  Diffractograms of the alloys after the heat 
treatment of betatization. 
 

Table 2  Percentages of the present phases in the alloys by 
XRD. 

Alloying phases wt% 

Cu9Al4 NiAl CuNi2Ti AlCu2Ti Cu3Ti 

0.0%Ti 90.70 9.30 - - - 

0.5%Ti 95.02 - 4.98 - - 

0.6%Ti 53.90 - 41.65 4.40 - 

0.7%Ti 38.70 - 49.35 6.31 5.63 
 

The diffraction analysis of the Cu-14Al-4Ni-0.7Ti 

alloy showed the beneficial effect of the 0.7% Ti 

content related to the reduction of the amount of the 

Cu9Al4 fragile phase. In addition, this amount of Ti 

contributes to the increase of the CuNi2Ti and AlCu2Ti 

phases. However, this Ti content also provided the 

formation of 5.6% of a typical martensitic structure, 

ordered by Cu3Ti which is named X-phase [12]. 

Table 2 shows the arrangement of the present 

phases in each alloy, as well as the percentage in 

weight (wt%) relating to each phase. It is possible to 

notice a considerable reduction of the γ2 phase 

according to the increase of the Ti content (0.6% and 

0.7%), except for 0.5% Ti alloy. For the 

Cu-14Al-4Ni-0.6Ti and Cu-14Al-4Ni-0.7Ti alloys, the 

formation of the AlCu2Ti alloy reduces the 

concentration of Ti in the matrix. It was noticed that the 

amount of the Cu9Al4 phase decreased with the 

increasing of Ti. Nevertheless, the precipitation of the 

γ2 phase can not be completely suppressed. This would 
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make the casting process instable due to the increase 

of the solidification rate [12].  

The images obtained by AFM, shown in Figs. 3a-3d, 

illustrate the fine needle structures, which are typical of 

a martensitic structure, in the alloy with and without 

adding Ti. These structures are characteristic of the 

Cu9Al4 phase. The presence of this phase in the   

alloys can be confirmed through the diffractometric 

analyses. 

In addition to the fine and long needle structure 

typical of martensitic structures formed after the heat 

treatment, the Cu-14Al-4Ni sample also showed fine 

grained contours. The Cu-14Al-4Ni-0.5Ti sample 

presented thicker and more visible grain contours 

compared to the sample without the Ti, which may be 

related to the higher percentage of the γ2 phase in this 

alloy. 

Figs. 4a-4c also show the X-phases, indicated by the 

arrows, of the samples obtained by EDS (backscattered 

electrons). These micrographs confirm the presence of 

globular particles referring to the X-phase, rich in Ti. 

According to the ASTM E112 [13], the grain size 

can be measured and calculated through Eq. (4). 

ܩ ൌ െ3,2877 െ ሾ6,6439 ൈ logሺ݉݉ܮሻሿ (4)

The Hyen Intercept method was applied because it 

offers a greater reliability for the determination of 

non-equiaxed grains. G is the ASTM grain size and L is 

the measured grain length in millimeters. The grains 

were measured directly using AFM. The located 

average values were inserted into Eq. (4) and the results 

are shown in Fig. 5. 

It was possible to verify the beneficial effect of the 

increase of the Ti in the Cu-14Al-4Ni alloy subjected 

to supercooling, betatization and quenching in regard 

to the grain size reduction. This effect implies 

improvements in mechanical properties due to the 

fragility reduction. It can be noticed, that the increase 

of the percentage of Ti also implies lower grain size 

variation as shown in Fig. 6. This fact can be justified 

by the conjunct action of the Ti added and the process 

of the rapid solidification, which gives the material a 

more refined granolumetry. 
 

 
Fig. 3  Martensitic structures Cu9Al4 and x phase by AFM: (a) 0.0 Ti, (b) 0.5 Ti, (c) 0.6 Ti, (d) 0.7 Ti. 
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