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Abstract: The N70° DASA graben is a closed-rift that seems to be the deepest part of the Tim Mersoï Basin, which is located in the 
northwestern part of Niger in West Africa. It contains more than 805 m of Paleozoic-Mesozoic sediments. The tectonic subsidence 
and uplifting was calculated by using well log data and deducing the variations in sedimentary thicknesses over time. Geological 
mapping and tectono-sedimentary analysis indicate that the structural evolution of the DASA trough is characterized by two major 
periods: (1) the first period was marked by an uplift stage ranging from the Carboniferous to the Permian. It was typified by a weak 
subsidence rate (3.45 m/Ma on average), under a transpressive tectonic regime, with a decrease in the thickness of the sedimentary 
series along the axial zone of the trough, and an increase of the thickness towards the border areas; (2) the second period was 
characterized by a higher subsidence rate (4.11 m/Ma on average) related to a change in the tectonic regime. It was marked by a 
rifting stage preserved over a long period, subjected to an extensive tectonic regime, from the Triassic to the lower Cretaceous, 
during which the highest thicknesses of the sedimentary series developed in the axial zone of the graben. The structural and 
sedimentological features defined the DASA graben as a particular type of syn-sedimentary basin evolving from a transpressive 
tectonic regime during the Paleozoic to an extensive tectonic regime during the Lower Mesozoic. Thus, the second period marked by 
an extensional regime would probably be related to the opening of the first stages of the Atlantic Ocean. 
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1. Introduction 

The Paleo-Mesozoic Tim Mersoï Basin is located in 

the northeastern part of the Iullemmeden Basin and 

limited to the East by the Aïr Mountains (Fig. 1). 

According to Ref. [1], the Tim Mersoï Basin 

infilling thickness is about 1,800 m. The detrital 

material was deposited during the period ranging from 

Devonian (410 Ma) to lower Cretaceous (96 Ma) [2]. 

This basin, located on a stable lithosphere, may 

provide a very good example of an intracratonic basin 

with a low average subsidence rate preserved over a 

long period [3, 4]. 

During several years, the Tim Mersoï Basin has 

been the subject of uranium exploration and 

exploitation campaigns. In recent campaigns of 

mineral exploration, the N70° trending graben of 
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DASA has been discovered about 120 km of the 

northern part of Agadez city (Figs. 2 and 3). 

Logging data indicate that DASA graben sediment 

infilling is predominantly from Carboniferous (345 

Ma) to lower Cretaceous (99 Ma) which implies a 

sedimentation duration of 246 Ma. The maximum 

thickness of the DASA graben deposits is estimated at 

850 m, implying an average of subsidence rate of 

approximately 3.46 m/Ma. In the rest of the Tim 

Mersoï Basin, for the same period, the thickness of the 

deposits is estimated at 1,400 m [1-5]. Indeed, for the 

period ranging from the Carboniferous to the lower 

Cretaceous (246 Ma), the maximum thickness of the 

Tim Mersoï Basin deposits is approximately 1,400 m 

[6]. 

Therefore, for the same period, the mean subsidence 

rate of Tim Mersoï Basin is about 5.69 m/Ma. Thus, 

compared to the Tim Mersoï Basin, the DASA  

graben, which is its sub-basin, has paradoxically a  
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Fig. 3  DASA graben. 
 

lower subsidence rate. Theoretically, a strong 

subsidence rate in the graben should be expected, 

assuming the addition of additional tectonic 

sub-sidence related to the normal faulting. Hence over, 

the difference in the subsidence rate of the DASA 

graben raises questions about the mechanisms or 

factors about the causes at the origin off subsidence. 

The purpose of this article is to provide an overview 

of the mechanisms or factors that explain the overall 

reduction of DASA graben collapse, while allowing 

the reconstruction of tectono-sedimentary history. 

Concerning the sedimentary infilling, emphasis is 

placed on the outcropping series, generally 

represented by lower Cretaceous formations in the 

graben, and particularly on the Jurassic age series 

along the edges of the graben. On the other hand, the 

basal series, Carboniferous to Triassic, do not outcrop. 

Then, the tectono-sedimentary study requires the use 

of appropriate methods to access subsurface 

information. To answer all these questions, we 

adopted a multidisciplinary approach by integrating 

geological mapping, borehole and well log data 

analysis and micro tectonic analysis. In a specific way 

it involves: 

 a structural analysis that will allow characterizing 

Jurassic and Cretaceous tectonic events; 

 a characterization of the syn-sedimentary 

tectonics markers; 

 and to establish a geodynamic model for the 

DASA graben infilling. 

2. Geological Setting 

The Paleo-Mesozoic Tim Mersoï Basin geological 

history begins as early as the Cambrian in the Tin 

Séririne Syncline [7]. Subsequently, the sedimentation 

areas moved southward, resulting in the deposition of 

continental and marginal-littoral detrital formations 

ranging from Cambrian to Miocene (Fig. 3). Along 

the western edge of the Aïr, these detrital formations 

exhibit stratigraphic bevels (Fig. 2) from the Devonian 

to the Jurassic [8]. The Tim Mersoï Basin is 

characterized by a sedimentary infilling, resting 

unconformabily on the ante-Cambrian basement (Figs. 

2 and 3). The basin was infilled during three 

successive cycles including: Carboniferous cycle, 

Permo-Triassic to Jurassic one and lower Cretaceous. 

The first sedimentary cycle is characterized by the 

continental shelf facies, directly delivered from the 

Northeastern (NE) from the Aïr while the second, also 

platform-dominated, received contributions from the 

South Southwestern (SSW). 

The third cycle is represented by a clayey to 

sandy-clayey floodplain extending from the west to 

the center of the previous deposition area, which was 

gradually uprising in size [6-8]. 

According to Ref. [9], several deformations affect 
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the sedimentary infilling. These reflect the attenuation 

in the sedimentary deposits of the setback sets of the 

underlying basement. Three main directions of faults 

have been highlighted: 

(a) The N0° trending Lineament of In-Azaoua-Arlit 

and the N30° trending fault system of Madaouéla. All 

of exploited uranium deposits are located on the 

eastern compartment of the Arlit Fault, but uranium 

deposits have also recently been discovered in the 

western compartment [4]. 

The Madaouéla N30° fault system: they express in 

the basement and in the sedimentary cover in the form 

of flexure. These accidents are spaced twenty kilometers 

apart. The most important are the Madaouéla (sector 

of Arlit) and Adrar-Emoles (sector of DASA) trending 

faults. 

(b) The N130° to N140° trending faults represent 

the main fault system that affect the Aïr Mountain. In 

the sedimentary series, these directions are more or 

less expressed. The Arlit fault is associated with several 

N150° striking faults in the Arlit mining area [4]. 

(c) The N70° to N80° trending faults cut the 

basement intensively and also spread into the 

sedimentary deposits. The N70° trending faults are 

reactivated in dextral strike-slip movement during the 

upper Cretaceous [10]. At the regional scale, the N70° 

trending faults network plays a fault-damping role on 

the N30° faults [3]. 

The DASA graben which means “Dajy Surface 

Anomaly” is located within the Adrar Emoles 3, claim 

block in the eastern part of the Azélik dome. Adrar 

Emoles 3 covers an area of 121.3 km2. It is located 

between latitudes 7°40'00" N and 7°53'00" N and 

longitudes 17°51'14" E and 17°45'30" E. From a 

stratigraphic point of view, all known sedimentary 

series in the Tim Mersoï Basin are represented in 

DASA area as well. These are Carboniferous, Permian, 

Triassic, Jurassic and Cretaceous series (Fig. 4). 

The main faults observed in the DASA graben are 

Azouza fault which marked the border of the trough, 

Adrar-Emoles N30° striking fault, and secondary 

faults N130° to N150° trending and E-W striking (Fig. 

4). The DASA graben has the same orientation than 

the Carboniferous coal trough of the AnouAraren 

region (Fig. 2). 

These coal troughs are limited by two major N70° 

trending dextral strike-slip faults. These are the 

Isokenwali fault in the northern part and the Aboye 

one in the southern part. These two faults belong to 

the same system as the Tin Adrar N70° striking fault 

system, which is well represented in the Arlit region 

[11]. Most of works carried out in the Tim Mersoï 

Basin so far have focused on the tectono-sedimentary 

evolution of the basin and the uranium metallogeny [1, 

4-6, 12-15]. 

The troughs formed in this Tim Mersoï Basin have 

been very few studied [11-16]. 

3. Methodological Approach 

A multidisciplinary approach has been implemented 

in this study. It is based on: 

(1) Geological mapping of the DASA sector is 

based on the combined use of satellite imagery and 

field observations. Ten sections were made along the 

axis of the DASA graben and seven other sections are 

disposed perpendicular to the axis of the graben. The 

use of the MapInfo software enabled to correlate the 

data collected, resulting in the geo-logical map of the 

DASA sector. 

(2) Tectono-sedimentary analysis is based on cores 

drilling, cross sections and well log data analysis. In 

the DASA area more than 1,000 boreholes were 

carried out. We have used some of these borehole data 

to perform a model of the structural evolution of the 

DASA graben. Thus, the cross-sections disposed 

perpendicularly to the DASA graben axis allow 

observing its tectono-sedimentary evolution during the 

main period of infilling (Carboniferous, Permian, 

Triassic, Jurassic and Early Cretaceous). 

(3) To conduct the microtectonic analysis we have 

chosen on the satellite imagery the stations were 

outcrops well preserved. Thus, ten (10) stations were 
 



The DASA Graben in Northern Niger: A Case of a Paleo-Mesozoic Basin Evolving from Uplifting to Rifting 

 

71

 

 
Fig. 4  Simplified stratigraphic log of the geological series of the Tim Mersoï Basin ([3], modified), mean subsidence = 5.69 m/Ma. 
 

chosen along the edge of the DASA graben. Each 

microtectonic station is characterized by a population 

of microfaults including 10 to 15 measurements. 

Nearly 136 striated microfault planes were analyzed. 

For each striated microfault plane measured, the 

following characteristics were collected: 

 direction (0-180°) and dip (0-90°) of the 

microfault planes; 

 pitch of the striae (0-90°) and its plunging area 

(0-180°); 

 direction of displacement of the microfault plane 

(N for normal, I for inverse, D for dextral and S for 

sinistral); 

 reference number for each striated plane 

measured. 

Thus, the measurements obtained make it possible 

to establish a data file according to the model of  

Table 1. 

The different populations of microfault planes were 

analyzed by using Win tensor (Win tensor 5.9.8) [17]. 

4. Results 

4.1 Geological Mapping 

Most of the previous mapping in the Tim Mersoï 

Basin has been restricted to the Arlit area, which was 

of special uranium mining interest. In the areas 

previously considered to be of lower uranium 

potential, such as the DASA sector, no detailed 

tectono-sedimentary analysis has been conducted so 

far. In the DASA area, the only maps available are 

those of Ref. [18] at a scale of 1:500,000e and Ref. 

[19] at a scale of 1:50,000e. These maps present 

uncorrelated information; for example, the same facies 

have been mapped and interpreted differently 

according to the different authors. These observations 
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Fig. 9  Drill cores showing thickness variations on both sides of the fault planes: (a) and (b) in the Carboniferous formation of Tarat 
and (c) in the Jurassic formation of Tchi 2. 
 

 
Fig. 10  Map of distribution of stress tensors related to the Jurassic-Cretaceous tectonic phase and average direction of extension. 
 

of the episode of synchronous deformation of the 

Jurassic deposits that were affected after their 

establishment by a second post-lithification 

deformation phase. The generated structures include 

abrasion or cataclase features (Riedel fractures, 

secondary synthetic fracture, spoon-shaped depression) 

and syn-kinematic recrystallizations of silica. 

The tectono-sedimentary analysis of the lower 

Cretaceous infilling was derived from borehole and 

well log data. Microtectonic analysis was carried out 

onto the brittle faulting zone or semi-ductile 

deformation areas, which are bordering the trough and 

were the tectonic structures, are best preserved. 

Microtectonic analysis is based on ten stations (St1 to 

St10) of microfault populations distributed across the 

Jurassic terrains. About 136 brittles to synlithification 

microfaults were considered (Fig. 10). 

Beside the outcrop, the syn-lithification microfaults 

can be recognized by the following characters: 

 The microfault planes have the same color as the 

sediment patina (Fig. 8); 

 The striaes are linear or curved (Fig. 8); 

 The faults planes are generally curved (Fig. 8). 

The post lithification deformations that affected the 

trough after lower Cretaceous period were not taken 

into account. 

(a) (b) (c)
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4.4 Jurassic Synlithification Paleostress 

To study the dynamics of synlithifications 

microfaults, the different populations of microfault 

planes were projected onto Win tensor program (Win 

tensor 5.9.8) [17]. Automatic processing result of 

different striaes from populations of microfaults of the 

stations No. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 shows 

evidence of extensional paleostress tensors (Fig. 10). 

The obtained extensional paleostress tensors were 

plotted onto the map of the DASA area. Each tensor is 

represented by a pellet characterized by the number of 

the station reference and the direction of the minimum 

stress σ3 (Fig. 10). 

At the scale of the DASA graben, the processing of 

the different populations of pre-lithification 

microfaults made it possible to distinguish three types 

of extensive paleotensors: 

 Extensive paleotensors with σ3 varying from 

N130° to N170° (St6, 7 and 10, Fig. 10); 

 Extensive paleotensors with σ3 varying from 

N30° to N70° (St2, 3, and 9, Fig. 10); 

 Radial extensive paleotensors (St8, Fig. 10). 

The paleostress distribution map shows a large 

variation in the direction of the minimum stress σ3 

(Fig. 10). During the Jurassic period, the study area 

underwent a ~N160° extensional phase which was 

responsible for the opening of the DASA graben. 

5. Discussion 

The tectono-sedimentary evolution of the DASA 

graben is the result of the interaction between an uplift 

phase (from the Carboniferous to the Permian) and a 

rifting phase (from the Triassic to the lower Cretaceous). 

The uplift period highlighted in the DASA graben 

shows that at least one compression period affected 

the region during the Late Paleozoic. The rifting 

phases, which occurred from the Triassic to the lower 

Cretaceous, imply that the region was subjected to a 

period of distension (Figs. 11 and 12). 

To explain the succession of these two phases of 

structuring (uplift/rifting) over the time, the results of 

this study were compared to those realized in other 

African basins, such as Tim Mersoï, Téfidet (North 

Niger), Benue trough (Nigeria) and Muglad Basin 

(Sudan). 

According to the bibliographic data, a N40° Visean 

compression phase has been highlighted in Algeria in 

the area of Ougarta by Blès [20], in the Béchar Basin 

by Conrad and Lemosquet [21], in the Illizi Basin by 

Boudjema [22] and in the Ahnet Basin by Zazoun [23]. 

In the Tim Mersoï Basin too, a N25° horizontal 

shortening, upper Visean in age was highlighted by 

Konaté [5]. During this Visean episode of shortening, 

the N70° trending Tin Adrar fault system was 

reactivated as a strike-slip fault. 

The uplift observed in the DASA graben, during the 

upper Paleozoic, indicates that the strike-slip sinistral 

reactivation of the N70° trending faults has a reverse 

component. At that time, a transpressive tectonic 

regime would have affected the DASA graben. This 

could explain the fact that the thicknesses of the upper 

Paleozoic series are thinner in the axial zone and 

corresponded to a paleo-high with respect to the 

bordering zones, which had collapsed and showed 

higher thicknesses. The DASA graben shows a 

relatively low sedimentation rate in the axial zone 

(1.67 m/Ma), compared to the border zones (3.65 to 

3.75 m/Ma) during the upper Paleozoic period. These 

observations are in agreement with the prevailing 

uplift episode. 

The second structuring period of the DASA graben 

is marked by a change in the tectonic regime (Figs. 11 

and 12). This is characterized by a rifting phase 

preserved over a long period from the Triassic to the 

lower Cretaceous. 

The structural evolution of the DASA graben 

during the Jurassic-Cretaceous period was compared 

to those of the West and Central African Rift Systems, 

commonly referred to as WCARS. During the lower 

Cretaceous, these rift systems were affected by 

extensive to transtensive tectonics regime [24, 25], 

favoring a strong subsidence (54 m/Ma for the Termit  
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Fig. 11  DASA graben model evolution at Carboniferous to lower Cretaceous. 
 

 
Fig. 12  Geodynamic evolution of the DASA graben showing an inversion of the tectonic regime: (a) uplifting period and (b) rifting 
period. 
 

Basin [26], 65 m/Ma for the Muglad Basin [27], 43 

m/Ma for the Benue trough [28] and 13 m/Ma for the 

Téfidet trough [16]). 

Unlike those Cretaceous rift systems, the DASA 

graben has a lower subsidence rate (6.52 m/Ma). 

Given the geodynamic context during the Cretaceous, 

these extensional tectonics regimes affecting the 

DASA graben could be associated to the opening of 

the South Atlantic occurring during that period [25, 29, 

30]. 

The structural evolution of the DASA graben is 

marked by a tectonics inversion (Figs. 11 and 12). 

6. Conclusions 

This study has integrated several types of data (field, 

cartography, well log, microtectonics, 

tectono-sedimentary) and shows that the evolution of 

the DASA graben is closely related to the polyphase 

kinematics of the N70° border faults. The 

sedimentological and structural characteristics of the 
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DASA graben (e.g., non-homogeneity of the main 

stresses, stratigraphic gaps, and mismatch in the 

vertical facies sequence) characterize a particular type 

of basin evolving from a Paleozoic transpressive 

regime to an extensive Mesozoic regime (Fig. 12). 

The strong subsidence observed within the lower 

Cretaceous in the DASA graben could be related to the 

initial stages of opening of the Atlantic. 
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