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Abstract: This paper presents the ZINDOT model, a methodology utilizing a zero-inflated negative binomial model with the 
variables used in the United States Department of Transportation (USDOT) accident prediction formula, to determine the expected 
accident count at a highway-rail grade crossing. The model developed contains separate formulas to estimate the crash prediction 
value depending on the warning device type installed at the crossing: crossings with gates, crossings with flashing lights and no gates, 
and crossings with crossbucks. The proposed methodology also accounts for the observed accident count at a crossing using the 
Empirical Bayes method. The ZINDOT model estimates were compared to the USDOT model estimates to rank the crossings based 
on the expected accident frequency. It is observed that the new model can identify crossings with a greater number of accidents with 
Gates and Flashing Lights and Crossbucks in both Illinois (data which were used to develop the model) and Texas (data which were 
used to validate the model). A practitioner already using the USDOT formulae to estimate expected accident count at a crossing 
could easily use the ZINDOT model as it employs the same variables used in the USDOT formula. This methodology could be used 
to rank highway-rail grade crossings for resource allocation and safety improvement. 
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1. Introduction 

Accident prediction models are used to predict the 

expected accident frequency at railroad grade crossings. 

Such models are important since they are used to rank 

railroad crossings for safety improvements and to 

allocate resources. Mainstream estimation of safety 

risk at railroad grade crossings dates back to the early 

1970s with the consolidation of the railroad grade 

crossing inventory by public agencies and private 

railroads. This allowed for the development of a 

systematic methodology to estimate safety risk at a 

crossing for prioritizing them for safety improvements. 

One of the commonly used accident prediction 

models for railroad grade crossings is the United 

States Department of Transportation (USDOT) 

accident prediction formula [1]. This model was 

                                                           
Corresponding author: Jacob Mathew, Ph.D. candidate in 

transportation engineering, graduate research assistant, 
University of Illinois Urbana-Champaign. 

 

developed in the 1980s and the formula has not been 

altered except for a normalizing constant. This model 

used non-linear regression approach to develop separate 

formulas for each of the warning device type installed 

at the crossing (gates, flashing lights with no gates, 

and crossbucks). Two main criticisms of this model are, 

age of the model and the lack of any study comparing 

the model estimates to the accident experience. 

Researchers have used other methodologies to 

estimate the expected accident frequency such as the 

Poisson regression, Negative Binomial regression, 

Zero-inflated models [2-4]. These methodologies 

establish a relationship between the expected accident 

frequencies at a location as a function of some of the 

characteristics of the location. The estimates are 

further improved by considering the accident history 

of the crossing. The USDOT accident prediction 

formula employs a method that linearly combines the 

accident history at the crossing with the initial model 

estimate. Accident history is used in several hazard 
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models in the literature (Oregon, Utah, Detroit 

formulae) in an additive format [5]. Another method 

to include the accident history at the crossing to 

improve this initial estimate is Empirical Bayes 

approach [6]. Thus, two components that influence the 

final estimate of crossing safety are: 

(1) the format of the equations and the variable used 

in the accident prediction models; 

(2) the adjustment procedure used to account for the 

accident history at the crossing. 

This study explored if a new model format but with 

the same variables as the USDOT model could 

provide a more accurate prediction result. Since the 

purpose of these models is to generate a priority 

ranking of crossings, a more accurate model is one 

which can generate a ranked list of crossings that 

identifies a greater number of crossings with accidents 

among its top crossings than the USDOT model. 

Using the same variables as the USDOT model in the 

new model makes it convenient for anyone who is 

already using the USDOT model as they would not 

have to collect additional data to use the new model. 

A new model format (Zero Inflated Negative 

Binomial or ZINB) using the USDOT variable is 

developed to estimate the initial expected number of 

accidents. The model is developed using the accident 

data from the state of Illinois between the years 

2012-2016. Then, adjustments are made to the initial 

estimates using the Empirical Bayes method. The 

model developed using data from Illinois is also 

validated using data from Texas. Section 2 and 

Section 3 of this paper discuss the model formats and 

accident history adjustment procedures.  

2. Model Formats 

2.1 USDOT Model Format 

The USDOT accident prediction formulas are given 

in the Highway-Rail Grade Crossing Handbook [7]. 

The development of these formulae is credited to 

Mengert [1] and is based on techniques applying 

nonlinear multiple regression techniques to crossing 

characteristics. Further details about the model are 

given in the Summary of DOT Rail-Highway Crossing 

Resource Allocation Procedure-Revised [8]. 

As per the USDOT formula, the initial accident 

prediction value (a) for crossings is given in Table 1. 

Please note that the coefficients in the initial 

accident prediction (a) in the USDOT formulae as 

mentioned in the Highway-Rail Grade Crossing 

Handbook [7] are different from the coefficients given 

in the Summary of DOT Rail-Highway Resource 

Allocation Procedures-Revised [8]. The FRA uses the 

coefficients mentioned in the Summary of DOT 

Rail-Highway Resource Allocation Procedures in their 

Web Accident Prediction System [9]. These values 

were used in this study to calculate the initial estimate 

using the USDOT model format. The initial accident 

prediction value (a) is adjusted based on the accident 

history using the method described in Section 3.1 of 

this paper. 

2.2 Zero Inflated Negative Binomials 

Modeling of count data is usually done using the 

Poisson or the Negative binomial model. Park et al. [10] 

used Poisson regression on a stratified homogeneous 

dataset. Austin et al. [2] used a negative binomial 

regression model after determining that a Poisson 

model was inappropriate to use due to overdispersion 

in the data. An extension of standard Poisson and 

negative binomial regression is zero-inflated probability 

processes, such as the zero-inflated Poisson (ZIP) and 

zero-inflated negative binomial (ZINB) regression 

models. The assumption involved in the Zero-inflated 

model is that some crossings have a very low 

probability of accidents that they could be considered 

virtually safe [3]. The nature of the distribution of 

accident count data for grade crossings is unique in 

such a way that the number of crossings that observed 

zero accidents observed is very large. Only around 7% 

of the crossings had any accidents as shown in Table 2. 

This suggests a zero-inflated distribution of accidents 

across the crossings. 



 
 

Table 1  Equations for crossing characteristics factors for USDOT formula. 

  EI DT MS MT HP HL 

 
Formula 
constant 

Exposure index factor Day through trains factor 
Maximum speed 
factor 

Main tracks 
factor 

Highway paved factor
Highway lanes 
factor 

Crossing with 
gates 

0.0005745 ൬
ݐ݀ܽܣ ∗ ݊ݎ݈ܶܽݐ݋ܶ ൅ 0.2

0.2 ൰
଴.ଶଽସଶ

൬
ݑݎ݄ܶݕܽܦ ൅ 0.2

0.2 ൰
଴.ଵ଻଼ଵ

 1 ݁଴.ଵହଵଶ ∗ ெ௔௜௡்௥௞ 1 ݁଴.ଵସଶ଴ ∗ ሺ்௥௔௙௜௖௅௡	ି	ଵሻ

Crossing with 
flashing lights 
and no gates 

0.0003351 ൬
ݐ݀ܽܣ ∗ ݊ݎ݈ܶܽݐ݋ܶ ൅ 0.2

0.2 ൰
଴.ସଵ଴଺

൬
ݑݎ݄ܶݕܽܦ ൅ 0.2

0.2 ൰
଴.ଵଷଵଵ

 1 ݁଴.ଵଽଵ଻ ∗ ெ௔௜௡்௥௞ 1 ݁଴.ଵ଼ଶ଺ ∗ ሺ்௥௔௙௜௖௅௡	ି	ଵሻ

Crossings with 
crossbuck 

0.0006938 ൬
ݐ݀ܽܣ ∗ ݊ݎ݈ܶܽݐ݋ܶ ൅ 0.2

0.2 ൰
଴.ଶଽସଶ

൬
ݑݎ݄ܶݕܽܦ ൅ 0.2

0.2 ൰
଴.ଵ଻଼ଵ

 ݁଴.଴଴଻଻	∗	ெ௔௫்௧௦௣ௗ 1 ݁ି଴.ହଽ଺଺ ∗ ሺு௪௬௉௩௘ௗ ି ଵሻ 1 

where:  

Aadt is the annual average daily traffic at the crossing; 

TotalTrn is total number of trains using the crossing; 

DayThru is number of daytime thru trains at the crossing; 

MaxTtSpd is the maximum timetable train speed at the crossing; 

MainTrk is the number of main tracks at the crossing; 

HwyPved is a binary variable indicating if the highway is paved (= 1) or not (= 0); 

TrafficLn is the number of highway lanes at the crossing. 
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Table 2  Number of accidents at gated crossings in Illinois. 

Accident count 
(2012-2016) 

Number of 
crossings 

Percentage of 
crossings 

0 2,555 92.74 

1 178 6.46 

2 12 0.44 

3 8 0.29 

4 2 0.07 

Sum 2,755 100 
 

The ZINB model is a two-part model. The first part 

is the zero-inflation part that is based on the 

assumption that the possibility of accidents in certain 

locations is so close to zero that these locations would 

have zero accident counts. The second part is the 

count part of the model which gives the distribution of 

the accident frequency as a count (Negative Binomial) 

process. The variables that were used in the USDOT 

formula were used in this model. 

Other arguments in favor of using a zero-inflated 

model are: 

(a) Previous research in this area [11, 12] compared 

three different count models (Poisson, Negative 

Binomial (NB) and Zero Inflated Negative Binomial 

Models (ZINB)). Their research suggested a better 

goodness-of-fit for the ZINB model as compared to 

the Poisson or the NB models. 

(b) The ZINB model gives parametric expressions 

for the expected accident counts and the variance of 

the expected accident counts making the ZINB  

model mathematically convenient. These values are 

required for the Empirical Bayes method used in this 

paper.  

(c) ZINB models have been shown to give good 

results in the estimate of accident frequency in several 

other studies as well [3, 13, 14]. 

Mathematically, the accident counts (a) would have 

the following probability distribution per the ZINB 

models. 

ܽ ൌ 	 ൜
0	with	probability	φ

݃ሺܽ|ݔሻ	with	probability	1 െ ߮ (1)

This yields a probability mass function for 

individuals with zero counts as described by Eq. (2) 

and for individuals with counts greater than zero as 

described in Eq. (3). 

ܲ ሺܽ ൌ ሻݔ|0 ൌ ߮௜ ൅ ሺ1 െ ߮ሻ݃ሺ0|ݔሻ (2)

ܲ ሺܽ ൐ ሻݔ|0 ൌ ሺ1 െ ߮ሻ݃ሺܽ|ݔሻ (3)

where:  

a is the number of accidents at the crossing with 

characteristics x; 

x is the vector of variables input to the model for 

crossing; 

g(a) generates the count from a negative binomial 

process for crossing. 

The estimate for the expected value for a and its 

variance is given in Eqs. (4) and (5 below. 

ሾܽሿܧ ൌ ሺ1ߤ െ ሻ (4)݌

ܸሾܽሿ ൌ ሺ1ߤ െ ሻ൫1݌ ൅ ݌ሺߤ ൅ ሻ൯ (5)ߙ

where: 

 is the mean of the negative binomial process 

described by g(a|x); 

 is the over dispersion parameter of the negative 

binomial model; 

p is the probability of the entity being in the 

“always 0” case in the finite mixture model. 

Details about parameter estimation for ZINB 

models using maximum likelihood estimation are 

given in Ref. [15]. 

3. Accident History Adjustment Procedures 

In this section, two different methods of accident 

history adjustment to estimate the expected accident 

count at a railroad grade crossing are discussed. The 

two methods are the DOT method and the EB method.  

3.1 DOT Method 

The USDOT accident prediction formulae give an 

accident prediction value based on a three-step 

computation. The first step involves the computation 

of an initial accident prediction based on the crossing 

parameters (described earlier). In the second step, the 

adjusted accident prediction value is related to the 

initial accident prediction value and the accident 

history at the crossing as: 
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ܤ ൌ 	 ଴ܶ

଴ܶ ൅ ܶ ∗ ܽ ൅
ܶ

଴ܶ ൅ ܶ ∗ ൬
ܰ
ܶ൰ (6)

଴ܶ ൌ 	
1

0.05 ൅ ܽ (7)

where B is the adjusted accident prediction value and 

N is the number of observed accidents in T years and 

“a” is the initial accident prediction value (accident 

prediction value before accident history adjustment). 

“a” for a crossing is related to its crossing traits. The 

USDOT formulae use normalizing constants which 

are updated every few years in its third step. Some 

observations that can be made about the USDOT 

accident history adjustment include: 

(1) The adjusted accident prediction value (B) is 

related to the initial accident prediction value (a) and 

the average number of accidents observed over T 

years (N/T). 

(2) B is a weighted average of a and N/T and 

therefore would lie between a and N/T. 

(3) If no accident is recorded in T years, the 

expected number of accidents is equal to normalization 

constant times the initial accident prediction value. 

The recommended value for T is 5 years.  

3.2 Empirical Bayes Method 

The Empirical Bayes approach is a way to use two 

“inputs” to estimate the safety at an entity (railroad 

grade crossing). The first of the two “inputs” are an 

initial estimate of the expected number of accidents at 

the railroad grade crossing. This is estimated based on 

a reference population which shares the same traits as 

the crossing in consideration. By defining traits of the 

railroad grade crossing (like annual average daily 

traffic (AADT), total number of trains, maximum 

timetable train speed, etc.), we can define the 

reference population. “A reference population of 

entities is the group of entities that share the same set 

of traits as the entity in the safety of which we have an 

interest” [16]. The initial estimate of the expected 

number of accidents could be calculated based on the 

observed number of accidents at the grade crossings in 

the reference population. The second “input” is the 

accident history recorded (number of accidents 

observed) at the railroad grade crossing. These are 

combined as follows [17]. 

ܤ ൌ ݇ ∗ ሾܽሿܧ ൅ ሺ1 െ ݇ሻ ∗ ܰ (8)

݇ ൌ
1

1 ൅ ௏௔௥ሾ௔ሿ
ாሾ௔ሿ

 (9)

where E[a] is the estimate of the expected number of 

accidents based on the reference population, Var[a] is 

the variance of this initial estimate. N is the number of 

accidents observed at the crossing. The duration for 

which the number of accidents (N) is observed at the 

crossing is equal to the duration of accident counts 

used to estimate E[a]. E[a] can be estimated for a 

crossing using the multivariate regression method and 

would depend on the traits of the crossing. 

A few observations based on Eq. (8) can be made.  

(1) The adjusted accident prediction value is related 

to the number of observed accidents in the before 

period and the initial estimate of the expected accident 

count based on the crossing parameters.  

(2) The duration of the before period is the same as 

the duration of accidents counts used in the estimation 

of E[a]. 

(3) The adjusted accident prediction value depends 

on the variance of the initial estimate of the expected 

accident count Var[a]. 

(4) If Var[a] is 0, the adjusted accident prediction 

value is equal to the estimated value for the accident 

count at the crossing. This means that, if the variance 

of the estimated expected accident count is 0, the 

expected number of accidents could be solely 

predicted based on the crossing parameters. 

(5) If Var[a] is very high, the adjusted accident 

prediction value for the crossing is influenced more by 

its accident history observed than the initial estimate 

based on crossing characteristics. 

The Empirical Bayes method has also been used in 

before-after studies to estimate the effectiveness of 

safety improvements [18, 19]. 
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3.3 Comparison of the Two Accident History 

Adjustment Methods 

Some of the similarities and differences identified 

between the two methods are listed below. 

3.3.1 Similarities 

The two different methods of accident history 

adjustment are a weighted average of the initial 

estimate of the expected accident count (initial 

accident prediction value) which is related to the traits 

at a crossing, and the number of accidents observed at 

a crossing. Both the models can be written as  

ܤ ൌ ݓ ∗	ܽ′ ൅ ሺ1 െ ሻݓ ∗ ܰ ′ (10)

where w is a constant, a’ is related to the initial 

estimate of the expected number of accidents at the 

crossing and N’ is related to the accident history at the 

crossing. The weight (w) used to find the adjusted 

estimate of the expected number of accidents is related 

to the initial estimate of the number of accidents in 

both the methods. 

3.3.2 Differences 

In the DOT method, w = To/(To + T) and To is 

related to “a”, i.e., the weight used in the accident 

history adjustment is related to the initial estimate of 

the safety and the duration for which accident history 

was observed. This is different from the Empirical 

Bayes method in which w = 1/(1 + (Var[a]/E[a])), 

depends on the initial estimate based on the reference 

population and also the variance of the initial  

estimate.  

4. Data 

The data used in this study were obtained from the 

databases maintained by the Federal Railroad 

Administration [20]. Three separate databases 

available in this website are relevant for this study: 

The Highway Rail Accident database, the Grade 

Crossing Inventory database, and the Grade Crossing 

inventory History database. 

Highway Rail Accident database contains 

information about “any impact, regardless of severity, 

between a railroad on-track equipment consist and any 

user of a public or private crossing site”. All grade 

crossing collisions are reported to the FRA regardless 

of the monetary value of damage caused. The database 

contains a variety of information including data about 

the type of highway vehicle involved, speed of the 

train at collision, and environmental factors such as 

time of day and weather conditions. 

Grade Crossing Inventory database includes 

information reported to the FRA by each state DOT 

about the condition of each crossing. This includes 

information about the highway (i.e. annual average 

daily traffic (AADT), number of traffic lanes, posted 

highway speed) and the rail line (i.e. timetable speed, 

daily number of trains). 

Grade Crossing Inventory History database includes 

data about the changes to the crossing inventory 

database. This was used to filter out the crossings 

which had a change in its warning device type during 

the analysis period. 

The Grade Crossing Inventory database for Illinois 

had 26,089 records. This list contains crossings which 

are on both public and private highways, some 

crossings with old data that may not have been 

updated, crossings with missing or incomplete data, 

etc. Therefore, this database was filtered based on the 

filters given in Table 3 to obtain a meaningful  

dataset (Table A-1) for at grade crossings on    

public roads. The researchers recommend the 

application of such filters before using the dataset for 

any analysis so that the analysis is done on a 

meaningful dataset.  

During the filtering, it was also ensured that     

no crossing had any variables with missing entries in 

the dataset. Furthermore, the warning device in the 

crossing was compared to the warning device of the 
 

Table 3  Number of crossings and accidents in Illinois 
(2012-2016). 

Warning device 
type 

Number of 
crossings 

Number of accidents 
(2012-2016) 

Gates 2,755 234 

Flashing lights 960 42 

Crossbucks 1,382 52 
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corresponding crossing as given in the grade crossing 

inventory history dataset. In this way, crossings that had 

a change in its warning device were also eliminated from 

the study. 

Using the crossing ID as the key, the filtered grade 

crossing inventory database and the grade crossing 

accident database were combined. Three separate 

databases were created, one for each warning device 

category. The number of crossings in Illinois (after the 

filters) and the number of accidents observed in the 

5-year span (2012-2016) is given in Table 3. 

5. Equations for the Fitted Models for Each 
Device Type 

The developed models use a Zero Inflated Negative 

Binomial format and the variables used in the model 

are the same variables as used in the USDOT accident 

prediction formulae. For that reason, the models 

described in the paper are called the ZINDOT models 

(Zero Inflated Negative Binomial Models with 

USDOT formula variables). Models are fitted for all 

three warning device types and are described below. 

The final calculation from the ZINDOT also includes 

adjustment to account for the accident history at the 

crossing. 

The expression for the ZINDOT model is given by 

Eq. (11). 

ܱܶܦܰܫܼ ൌ ݇ ∗ ܾ݊݅ݖ ൅ ሺ1 െ ݇ሻ ∗ (11) ܣ

ܾ݊݅ݖ ൌ ሺ1 െ (12) 	ߤሻ݌

The expressions for p, ߤ (and therefore zinb), and 

k are dependent on the type of warning device at the 

crossing. The expressions for crossings with Gates, 

Flashing Lights without Gates and Crossbucks are 

given below. 

5.1 Model for Crossings with Gates 

The equation for the ZINDOT model for crossings 

with gates is given by:  
 

݌ ൌ 	
1

1 ൅ ݁ଵ଼଴.଺଻ଵ	ି	ଵ଺.ଽଷଷ	∗	୪୭୥ሺ஺௔ௗ௧	∗	்௢௧௔௟்௥௡ሻ ି ଶଷଶ.ଶଽ଺ ∗ ெ௔௜௡்௥௞ ା ଻.ଶହ଼ ∗ ஽௔௬்௛௥௨ ା	଻.ହ଺ଶ	∗	்௥௔௙௜௖௅௡ (13)

ߤ ൌ 	 ݁ି଻.ଶଷସ଻ଽ଺	ା	଴.ଷହ଻ଽ଻ସ	∗	୪୭୥ሺ஺௔ௗ௧ሻ	ା ଴.ସ଴଻ଷଵଶ ∗ ெ௔௜௡்௥௞ ା ଴.଴଴ଷ଴ଽ଻ ∗ ஽௔௬்௛௥௨ ା ଴.଴ଽ଺ହ଼ହ	∗	்௥௔௙௜௖௅௡ (14)

݇ ൌ
1

2 ൅ ߤ ∗ ሺ1.74 െ ሻ (15)݌

5.2 Model for Crossings with Flashing Lights and no Gates 

The equations for the ZINDOT model for crossings with flashing lights and no gates are given by: 

݌ ൌ 	
1

1 ൅ ݁ଵ଻.ଷଵଽଵ	ି	ଶ.ଶଶଽ଴	∗	୪୭୥ሺ஺௔ௗ௧	∗	்௢௧௔௟்௥௡ሻ ି ଶ.ଷହ଺ଽ ∗ ெ௔௜௡்௥௞ ା ଴.ଷଷଽଶ ∗ ஽௔௬்௛௥௨ ା	ଵ.ଶଵଷଶ	∗	்௥௔௙௜௖௅௡ (16)

ߤ ൌ 	 ݁ିଷ.ସ଺଻ି଴.଴଴ହ଻	∗	୪୭୥ሺ஺௔ௗ௧ሻ	ି ଴.ଵ଺଺଴ ∗ ெ௔௜௡்௥௞ ା ଴.ଵଶସ଴ ∗ ஽௔௬்௛௥௨ ା ଴.ଷହଽସ ∗	்௥௔௙௜௖௅௡ (17)

݇ ൌ
1

2 ൅ ߤ ∗ ሺ1.0413 െ ሻ (18)݌

5.3 Model for Crossings with Crossbucks 

The equation for the ZINDOT model for crossings with crossbucks is given by:  

݌ ൌ 	
1

1 ൅ ݁ଵଷ.ସହସ	ି	ଵ.ସ଼ଶ	∗	୪୭୥ሺ஺௔ௗ௧	∗	்௢௧௔௟்௥௡ሻ ା ଴.ଶସ଺ ∗ ஽௔௬்௛௥௨ ି ଴.ଵଷ଼ ∗ ெ௔௫்௧ௌ௣ௗ ା ଴.ଶ଼଼ହ	∗	ு௪௬௉௩௘ௗ (19)

ߤ ൌ 	 ݁ିଵ.ସ଴ଽ଻	ା	଴.଴଴ଽ଼ ∗ ୪୭୥ሺ஺௔ௗ௧	∗	்௢௧௔௟்௥௡ሻ ା ଴.଴଺ହସ ∗ ஽௔௬்௛௥௨ ି ଴.଴ଷଷ଼ ∗ ெ௔௫்௧ௌ௣ௗ ା ଴.ଵଽ଼ଵ	∗	ு௪௬௉௩௘ௗ (20)
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݇ ൌ
1

2 ൅ ߤ ∗ ሺ1.00012 െ ሻ (21)݌

Appendix B to this manuscript includes further 

details on the model including the standard error of 

the estimates and the p-values. 

6. Comparing the ZINDOT Model to the 
USDOT Model 

The ZINDOT model and the USDOT model were 

compared on its ability to select high-risk crossings. A 

crossing which has a higher predicted value than 

another crossing is considered a higher risk crossing 

as per the model. A model which selects crossings 

which had or are likely to have a higher number of 

accidents is considered to be a “more accurate” model 

(among the two models compared). 

The number of accidents observed at the top 

crossings selected by each of the models is compared 

to each other. For both models, a crossing with a 

higher predicted accident is ranked higher than a 

crossing with a lower predicted accident. The ranked 

crossings based on the accident prediction values are 

compared based on the number of accidents observed 

at those crossings in the years 2012-2016. This 

comparison is done separately for crossings based on 

its warning device type. Two sets of data are used in 

this study: Illinois data and Texas data. Illinois data 

are used for developing the ZINDOT models and 

Texas data are used for validation of the models. 

6.1 Crossings with Gates 

The comparison is done for two different states: 

Illinois shown in Fig. 1 and Texas, shown in Fig. 2. 

An observation that could be made about the 

ZINDOT model is that the list of top crossing 

generated using this model is almost consistently 

better than or at least equal to the list generated based 

on USDOT formula in terms of accident counts 

observed (orange curve tends to be on or above blue 

curve in Fig. 2). At the top 50 crossings as selected by 

the ZINDOT model, there were 84 accidents observed. 

This is 2 more than the number of accidents observed 

at the top 50 crossings as selected by the USDOT 

model (82 accidents). The new model could identify a 

greater number of crossings that had accidents than 

the USDOT formula. This model developed using 

data from Illinois was tested for crossings in Texas. 

The crossings ranked based on ZINDOT model are 

seen to have a greater number of accidents than the 

crossings ranked USDOT model. This result is 

consistent with the observation made for top crossings 

in Illinois. 

Fig. 2 shows the comparison for gated crossings in 

Texas. The orange curve (representing ZINDOT) is 

consistently above the blue curve (representing 

USDOT model) in the comparison for Texas as well. 

At the top 50 crossings, the crossings selected based 

on the ZINEBS model had 141 accidents while the 

crossings selected based on the USDOT model had 

only 123 accidents (which is 18 accidents less than the 

ZINDOT model). 

6.2 Crossings with Flashing Lights and No Gates 

The comparison for crossings with Flashing Light is 

shown in Fig. 3 for Illinois and Fig. 4 for Texas. 

Comparing the number of accidents observed at the 

top-ranking crossings in Illinois, it can be seen that the 

ZINDOT model is almost consistently more accurate 

at ranking crossings than using USDOT model. This 

observation is repeated in crossings with Flashing 

Lights in Texas as well. 

6.3 Crossings with Crossbucks 

A similar comparison among crossings with 

crossbucks is made. In the dataset Illinois, as shown in 

Fig. 5, the ZINDOT model is able to identify 

crossings with a greater number of accidents in the 

future than the USDOT model. There were 52 

accidents in the top 50 crossbuck locations identified 

using the ZINDOT model as compared to the 47 

accidents in the top 50 crossbuck locations identified 

using the USDOT model.  



A New Accident Prediction Model for Highway-Rail Grade Crossings  
Using the USDOT Formula Variables 

 

9

 

 
Fig. 1  Cumulative number of accidents at the top-ranking locations: crossings with gates in Illinois. 
 

 
Fig. 2  Cumulative number of accidents at the top-ranking locations: crossings with gates in Texas. 
 

 
Fig. 3  Cumulative number of accidents at the top-ranking locations: crossings with flashing lights in Illinois. 
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Fig. 4  Cumulative number of accidents at the top-ranking locations: crossings with flashing lights in Texas. 
 

 
Fig. 5  Cumulative number of accidents at the top-ranking locations: crossings with crossbucks in Illinois. 
 

 
Fig. 6  Cumulative number of accidents at the top-ranking locations: crossings with crossbucks in Texas. 
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In Texas, as shown in Fig. 6, the observed accident 

count at crossings selected based on the ZINDOT 

model is higher than the observed accident count at 

crossings selected based on the USDOT model. At the 

top 50 crossings, there were 55 accidents in the 

crossings selected based on the ZINDOT model as 

compared to 41 accidents in the crossings selected 

based on the USDOT model. 

7. Conclusions 

One of the commonly used accident prediction 

models for railroad grade crossings is the United 

States Department of Transportation (USDOT) 

formula. This formula, however, has been developed 

over 40 years ago with the changes to the normalizing 

coefficients made once every few years based on the 

accident experiences. This paper presented ZINDOT 

model to estimate the expected accident frequency 

that used a different model format, more recent 

accident and inventory data, different accident history 

adjustment approach, but the same variables that were 

used in the USDOT accident prediction formula. 

The ZINDOT model, like the USDOT model, is a 

multi-part model. In the first part of the ZINDOT 

model, the Zero Inflated Negative Binomial model is 

used to estimate the initial accident prediction value. 

This part of the ZINDOT model uses the same 

variables as the USDOT model, but a different model 

format. In the second part of the ZINDOT model, 

Empirical Bayes method is used to adjust for the 

location accident history. This part of the ZINDOT 

model is similar to the USDOT model as it uses a 

weighted average of the initial estimate and the 

accident history. The difference in the second part is 

that the calculated weights in the ZINDOT model are 

dependent both on the initial estimate and the variance 

of the initial estimate unlike the USDOT model, 

which are only dependent on the initial estimate.  

The coefficient of the ZINDOT model was 

estimated by fitting the model using data from Illinois. 

The model was also validated using data from Texas. 

The ZINDOT model estimates were compared to the 

USDOT model estimates to rank the crossings based 

on the expected accident frequency. It is observed that 

the new model can identify crossings with a greater 

number of accidents with Gates and Flashing Lights 

and Crossbucks in both Illinois and Texas.  

Since the ZINDOT model utilizes the same 

variables that were used in the USDOT accident 

prediction formulae, using this new model would not 

require the collection of additional data, thereby 

making it easier for practitioners, already using the 

USDOT formula to use the ZINDOT model. The 

ZINDOT model can complement the USDOT model 

to identify high risk crossings for resource allocation 

and safety improvements. 
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Appendix A: List of Filters Used on Grade Crossing Inventory Dataset 

Table A-1  Filters used on grade crossing inventory dataset. 

Variable Description Filter Description of filter 
Number of
crossings 
after filter

  None Before any filters 26,089 

TypeXing Crossing type Select “3” Select public crossings only 17,054 

PosXing Crossing position Select “1” Select at grade crossing only 13,703 

ReasonID Reason for update Remove 16 Remove closed crossings 7,925 

TotalTrain Total number of trains > 0 Select crossings with 1 or more trains operating per day 7,183 

TotalTrack Total number of tracks > 0 Select crossings with 1 or more tracks at the crossing 7,090 

TraficLn Number of highway lanes > 0 
Select crossings with 1 or more highway lanes at the 
crossing 

6,774 

Aadt Annual average daily traffic count > 0 Select crossings with AADT > 0 6,763 

AadtYear Annual average daily traffic year > 2,000 Select crossings with year of AADT > 2,000 6,673 

HwySpeed Posted highway speed limit > 0 Select crossings with posted speed limit > 0 6,625 

MaxTtSpd Maximum timetable train speed > 0 and ≤ 79 
Select crossings with maximum timetable train speed 
between 0 and 79 mph 

6,624 

WdCode Warning device code 
Select 
“3”, ”7”, ”8” 
and ”9” 

Select crossings with crossbucks, flashing lights, four 
quad gates and all other gates 

6,476 

XSurfaceID Crossing surface 
Remove “17”, 
“19”, “20” 
and unknowns

Remove crossings with metal, unconsolidated, other or 
unknown crossing surfaces 

5,883 

Appendix B: Details of Fitted Zero Inflated Negative Binomial Models 

Table B-1  Zero inflated negative binomial coefficients for model for gates. 

Table B-1a  Coefficients of the count part of the model. 

 Estimate Std. error z value Pr (> |z|) 

Intercept -7.2348 0.4688 -15.4326 0.0000 

Log(Aadt * TotalTrain) 0.3580 0.0536 6.6765 0.0000 

MainTrk 0.4073 0.1415 2.8791 0.0040 

DayThru 0.0031 0.0047 0.6577 0.5107 

TraficLn 0.0966 0.0778 1.2415 0.2144 
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Table B-1b  Coefficients of the zero-inflation part of the model. 

 Estimate Std. error z value Pr (> |z|) 

Intercept 180.6707 188.0501 0.9608 0.3367 

log(Aadt * TotalTrain) -16.9334 17.3306 -0.9771 0.3285 

MainTrk -232.2965 250.6382 -0.9268 0.3540 

DayThru 7.2582 7.8799 0.9211 0.3570 

TraficLn 7.5622 7.3975 1.0223 0.3067 
 

Table B-2  Zero inflated negative binomial coefficients for model for flashing lights and no gates. 

Table B-2a  Coefficients of the count part of the model. 

Estimate Std. error z value Pr (> |z|) 

Intercept -3.4674 3.5507 -0.9765 0.3288 

log(Aadt * TotalTrain) -0.0057 0.3445 -0.0165 0.9869 

MainTrk -0.1660 0.5339 -0.3109 0.7559 

DayThru 0.1240 0.0565 2.1949 0.0282 

TraficLn 0.3595 0.2632 1.3656 0.1721 
 

Table B-2b  Coefficients of the zero-inflation part of the model. 

Estimate Std. error z value Pr (> |z|) 

Intercept 17.3191 6.6297 2.6124 0.0090 

log(Aadt * TotalTrain) -2.2290 0.9396 -2.3723 0.0177 

MainTrk -2.3569 2.1043 -1.1200 0.2627 

DayThru 0.3392 0.1754 1.9339 0.0531 

TraficLn 1.2132 0.9882 1.2277 0.2196 
 

Table B-3  Zero inflated negative binomial coefficients for model for crossbucks. 

Table B-3a  Coefficients of the count part of the model. 

Estimate Std. error z value Pr (> |z|) 

Intercept -1.4097 2.1661 -0.6508 0.5152 

log(Aadt * TotalTrain) 0.0099 0.2131 0.0464 0.9630 

DayThru 0.0654 0.0498 1.3124 0.1894 

MaxTtSpd -0.0338 0.0192 -1.7654 0.0775 

as.factor(HwyPved)2 0.1982 0.5737 0.3455 0.7297 
 

Table B-3b  Coefficients of the zero-inflation part of the model. 

Estimate Std. error z value Pr (> |z|) 

Intercept 13.4543 3.3962 3.9616 0.0001 

log(Aadt * TotalTrain) -1.4826 0.4134 -3.5859 0.0003 

DayThru 0.2460 0.0958 2.5695 0.0102 

MaxTtSpd -0.1382 0.0388 -3.5644 0.0004 

as.factor(HwyPved)2 0.2886 1.0726 0.2690 0.7879 

 


